
Pervasive Positioning Standard for
Fingerprint-based and Proximity-based

Systems

for

Site Owners and Application Developers

Prepared by Gary W.-H. Cheung, Peter W.-L. Tsui, Mengyun Liu
Supervised by S.-H. Gary Chan

HKUST

March 15, 2023

Contents

Introduction 1

1 Scope 2

2 Terminologies 3

2.1 Data . 3

2.2 Stakeholders . 4

2.3 Developers . 4

3 Conventions 5

4 Motivations 6

5 Design and Approaches 7

5.1 Operation Modes and Communication Protocols 7

5.1.1 Overview . 7

5.1.2 Four Operation Modes . 8

5.1.3 Handshaking for Choosing Operation Mode 11

5.1.4 Building Switching . 13

5.1.5 Obtaining Map Data . 13

5.1.6 Site Owners’ Server . 13

5.1.7 SDK for Applications . 13

5.1.8 A Holistic View of Communication Protocols 14

5.1.9 Application Authentication and Authorization 14

5.2 Site Signal Data Organization, Retrieval and Format 15

5.2.1 Overview . 15

5.2.2 Site Signal Formats . 15

i

5.2.3 Grid Reference System . 16

5.2.4 Site Signal Data Retrieval . 17

5.3 Map Data Organization and Retrieval . 18

5.3.1 Overview . 18

5.3.2 Existing Standards . 18

5.3.3 Multi-Layered Space Model . 19

5.3.4 Map Data Retrieval . 20

6 Data Structures and Formats 21

6.1 Site Signal Data . 21

6.1.1 Site Signal Definition for Fingerprint-based System 21

6.1.2 Site Signal Definition for Proximity-based and range-based System . 22

6.1.3 Grid Reference System . 23

6.1.4 Equations Connecting Latitude, Longitude, and Grid Reference System 25

6.2 Map Data . 26

6.2.1 A Multi-layered Space Model . 27

7 SDK API Specifications for Mobile Application Developers 32

7.1 Guideline for Implementing Pervasive Positioning 32

7.1.1 Initialization Step . 32

7.1.2 Indoor Localization . 32

7.1.3 Outdoor localization . 35

7.2 Detailed Specifications . 35

7.2.1 Data Classes . 36

7.2.2 API Manager . 45

7.2.3 Localization Assistant . 61

8 Server Specifications for Site Owners 64

8.1 API URL . 64

8.2 Mode 0 - APIs for Downloading Site Signals 65

8.2.1 GET - Request Signal Modes . 65

8.2.2 GET - Request GridIds . 66

8.2.3 GET - Request Site Signals by GridId 67

8.3 Mode 1 – APIs for Computing Locations 68

8.3.1 GET - Request Signal Modes . 69

ii

8.3.2 POST - Upload User Signals . 69

8.3.3 GET - Request Latest User Location 70

8.3.4 POST - Compute location . 70

8.4 JWT for Authentication and Authorization 71

8.4.1 Data Specification of a JWT . 72

8.4.2 Validating a JWT . 73

8.4.3 JWT Location . 74

9 Site Signal and Map Data Validation for Site Owners 75

9.1 Data Package Structure – File System Tree 76

9.1.1 Indoor Site Data Package . 76

9.2 Outdoor Site Data Package . 77

9.3 Data File Specification – Indoor Site Package 77

9.3.1 SiteInfo.json . 78

9.3.2 Spatial Representation Folder . 78

9.3.3 Maps folder . 84

9.3.4 Site Signals Folder . 86

9.4 Data File Specification – Outdoor Site Package 89

9.4.1 SiteInfo.json . 89

9.4.2 Maps folder . 90

9.4.3 Site Signals Folder . 90

9.5 Data Validation on the Platform . 92

10 User Journey Examples 93

10.1 Setting . 93

10.2 For Each Operation Mode . 93

10.2.1 Operation Mode 0 . 93

10.2.2 Operation Mode 1 . 96

10.2.3 Operation Mode 2 . 98

10.2.4 Operation Mode 3 . 101

10.3 Switching Floor and Mode . 102

10.3.1 Switching Floor . 102

10.3.2 Switching Mode . 103

10.4 Outdoor Localization . 103

10.5 In-Outdoor Transition . 103

iii

10.5.1 Indoor to Outdoor . 103

10.5.2 Outdoor to Indoor . 103

1

Abstract

Pervasive positioning is to locate an object anywhere seamlessly on a country scale.

Current positioning technologies are mature enough to support both indoor and outdoor

environments, using site signal survey and indoor localization algorithms for indoor and

GNSS for outdoor. Pervasive positioning can be realized provided that application requests

location services from the correct parties using the correct formats. Pervasive Positioning

Standard aims to bridge every party together. This standard specifies a set of communica-

tion protocols, data organization and format definitions for site signals, and data organi-

zation for maps using existing map standards. With this standard, existing location-based

service (LBS) applications are able to operate anywhere in Hong Kong including their

original supporting zone, and many novel LBS applications can be developed.

Introduction

The goal of the Pervasive Positioning Standard is to enable any applications to locate their

users anywhere so as to provide LBS potentially on a country scale. It is important to

be able to locate users in both outdoor and indoor environments. In outdoor open areas,

localization can be done with GNSS using satellite signals. In outdoor and indoor enclosed

environments, we carry out site surveys and use the site signals to locate users. However,

there are no agreed formats of site signals, so applications cannot share their site signals

with others easily to enlarge their supported zone. In addition, pervasive positioning

on a country scale requires the management of a huge size of site signal and map data.

This standard aims to provide communication protocols, data formats, and organization

required for an application to locate a user anywhere efficiently.

This standard consists of three components: 1) A set of communication protocols, 2)

data organization and format definitions for site signals, and 3) data organization for maps

using existing map standards.

Pervasive Positioning Standard embraces existing standards, if possible, to avoid re-

peating definitions. The standards that are covered are: IMDF, IndoorGML, and a few

image formats (JPEG, PNG, and GIF).

1

1 Scope

Pervasive Positioning Standard is a set of communication protocols with data organization

designs on site signals and maps. It aims to help LBS applications get locations anywhere

by requesting location services from the correct service providers. This standard defines:

• Communication protocols

– SDK APIs for applications to request location service

– Web APIs for site owners to host a server for service query

• Data organization and format definitions for site signals

– A grid reference system for organizing site signals

– Format definition of reference point for fingerprint-based system

– Format definition of anchor of proximity-based system

• Data organization for maps

– A multi-layered space model for organizing maps

This standard is for fingerprint-based and proximity-based localization only.

2

2 Terminologies

2.1 Data

Site signal data

Site signal data is collected from site survey. It is precomputed data that is used in indoor

localization systems, for example, WIFI fingerprint, iBeacon location, etc. This standard

is for fingerprint-based and proximity-based localization only.

Map data

Map data is used to display the environment, for example, a JPEG file, an IMDF archive,

etc. This standard only supports image format, IMDF, and IndoorGML.

Site spatial data

Site signal and map data, collectively called site spatial data.

User signal

User signals are the surrounding sensor measurements of the user. The format is defined

in this standard.

3

2.2 Stakeholders

End users (Applications)

Applications use this standard to provide pervasive positioning for end users. End users

either upload user signals or download site signals according to their preference.

Site owners

Site owners are the data holders of the site spatial data in his/ her site(s). They either

send site signals to the lookup server or host a server for location service query.

Site owners must upload map data to the lookup server.

Platform operator (Lookup server)

Lookup server is the contact point that applications connect for location services such as

computing locations and transmitting site spatial data. It stores site signals and maps

from site owners.

2.3 Developers

Application developers

Application developers who develop the LBS application using this standard to obtain

locations.

Site owner’s developers

Developers who build and set up servers for site owners. According to whether site owners

are willing to share site signals, site owners may or may not hire site owner’s developers

to set up servers.

4

3 Conventions

Symbols and abbreviated terms

API Application Programming Interface

IndoorGML Indoor Geographic Markup Language

IMDF Indoor Mapping Data Format

JSON JavaScript Object Notation

JWT JSON Web Token

LBS Location-based Service

MLSM Multi-Layered Space Model

NRG Node-Relation Graph

n-D n-Dimensional

RSSI Received Signal Strength Indication

SDK Software Development Kit

5

4 Motivations

Different applications have different methods to locate users in indoor environments, unlike

GNSS for outdoor areas. Therefore, site signals are stored in different representations and

styles. Let us consider when computing locations across two buildings A and B. Suppose

building A uses WIFI fingerprints as site signals and JPEG images as maps, while building

B uses iBeacon proximity and IMDF files. The current solution is to build two different

applications, so that when you need a location, you open application A to locate yourself

in building A and application B in building B. This case illustrates the inconvenience and

redundancy to get a location pervasively at this moment, and it is far from the concept of

pervasive positioning – to locate users in any applications.

But surprisingly, pervasive positioning can be realized with a simple concept: appli-

cations contact the right parties using the right formats. Continuing with the example,

suppose building A supports edge computation only and building B supports cloud com-

putation only. Contacting the right party means contacting the server for downloading

building A’s WIFI fingerprint as well as the server for computing locations in building B.

Using the right formats means the data formats involved when contacting, for example,

the WIFI fingerprint, user signal, location, etc.

Only two stakeholders, end users (applications) and site owners, involved in the com-

munication cannot ensure that applications contact the right parties. In the first place,

which building should be contacted when the application wants a location? Therefore, it

is necessary to maintain a platform for retrieving the building location information and

other useful data including metadata of site signals, maps that are needed to display the

locations to users, etc.

Therefore, in order to bridge every stakeholder together to achieve pervasive positioning,

this standard defines a set of communication protocols for applications, site owners and a

lookup server (platform) as well as the spatial data formats and organization for running

on a country scale.

6

5 Design and Approaches

5.1 Operation Modes and Communication Protocols

5.1.1 Overview

Communication protocols describe the necessary components for applications to acquire

locations, that is, what should be done for all stakeholders. The following diagram shows

a general workflow of the protocols:

Figure 5.1: A general workflow of communication protocols

Site owners first upload map data and/or site signal data to lookup server. When

applications request locations, they contact the lookup server, and the lookup server offers

the location service to them, for example, sending nearby site signals to them or redirecting

7

them to site owner’s server.

5.1.2 Four Operation Modes

End users and site owners may or may not want to share their data, which implies that only

one operation mode is not enough. For example, a cloud approach is not applicable if end

users do not share their user signals. Therefore, the communication protocols categorize

all cases into four operation modes:

Table 5.1: Four operation modes for different pairs of applications and site owners

Site owner

Application Not willing to share user sig-

nals with any server

Willing to share user signals

with any server

Not willing to share site

signals with the lookup

server

Operation mode 0 [00]

(Site-supported edge loc)

Operation mode 1 [01]

(Site server localization)

Willing to share site sig-

nals with the lookup

server

Operation mode 2 [10]

(Platform-supported edge

loc)

Operation mode 3 [11]

(Platform localization)

Applications may or may not want to share end users’ signal with any servers. This

determines whether the operation mode is a cloud approach or an edge approach, since an

edge approach must be chosen if applications do not share user. Besides, site owners also

decide whether or not to share their site signals with the lookup server, determining if it

is a centralized approach or a distributed approach. Therefore, depending on the types of

applications and site owners, there are four operation modes.

The first bit of the binary form of the operation mode is whether the site owner is

willing to share site signals with the lookup server while the second bit is whether the

application is willing to share user signals with any server.

Operation mode 0 - Site-supported edge localization

If the site owner does not share site signals with the lookup server and the application

does not share user signals with any parties, they should choose operation mode 0. The

site owner has to host a server for retrieving location and tell the lookup server his/her

8

Figure 5.2: Operation mode 0

server address. Then the lookup server returns the server address upon the application’s

request, redirecting it to the site owner’s server. After that, the application requests the

site owner’s site signals and computes the location locally.

Operation mode 1 - Site server localization

Figure 5.3: Operation mode 1

If the site owner does not share site signals with any parties but the application shares

user signals, they should choose operation mode 1. This mode is similar to mode 0, but

9

after the application is redirected, it sends user signals to the site owner’s server and

receives the location.

Operation mode 2 – Platform-supported edge localization

Figure 5.4: Operation mode 2

If the site owner shares site signals but the application does not share user signals,

operation mode 2 is the best choice. In this mode, the site owner uploads his/her site

signals to the lookup server. Then the application requests site signals from lookup server

and computes location locally.

Operation mode 3 – Platform localization

If both the application and the site owner are willing to share their data, operation mode

3 is the best choice. In this mode, the site owner uploads his/her site signals to the lookup

server. Then the lookup server computes the location for the application upon its request.

10

Figure 5.5: Operation mode 3

Whether or not to share data with others

For applications, sharing user signals weakens end users’ location privacy and increases

the latency since user signals will be uploaded to site owner’s server to compute locations.

However, if applications do not share user signals, it must compute the location locally,

which increases the device computational and storage requirements.

For site owners, there are three levels of sharing. The first is not to share with any

parties. Site owners should choose operation mode 1 so as to avoid any data privacy

concerns. The second is to share with application only, potentially restricting the number

of people accessing their site signals. Then they should choose mode 0. The third is to

share with anyone, choosing mode 2 or 3.

However, there is a trade-off between privacy protection and cost since higher privacy

protection means keeping more computation and information on their sides. Applications

and site owners should choose the operation mode according to their preferences.

5.1.3 Handshaking for Choosing Operation Mode

It is important to provide the information needed for applications to choose the operation

modes with the nearby building. Different applications may have different searching criteria

and considerations. Therefore, a handshaking process is needed between applications and

the lookup server to confirm the favored operation mode.

The handshaking consists of four steps:

11

Figure 5.6: Handshaking between applications and the lookup server

1. The application specifies a (set of) searching criteria that it is interested in, for

example, specifying a circle by a center and a radius, filtering out buildings not

having WIFI fingerprints, etc.

2. The lookup server returns building information satisfying the criteria. This informa-

tion includes everything the application needs to decide whether or not to select the

operation mode for this building, for example, the supported operation modes, type

of supported site signals, etc.

3. The application returns the selected building(s) and the operation mode(s).

4. After confirming the operation mode and the building, the lookup server sends the

necessary data for operation to the application. For example, the application needs

the site owner’s server address to upload user signals for locations in operation mode

1.

12

5.1.4 Building Switching

Unlike traditional localization, pervasive positioning supports dynamically changing of the

supported area. Therefore, before computing the location, an in-building region detection

is carried out to ensure the application is inside the supported region. If the application

is outside the supported region, the application needs to download the latest nearby site

signals or connect to the site owner’s server of the newly arrived building, which is called

building switching.

The simplest way is to handshake again with the lookup server to obtain the latest data

for operation. Applications are suggested to include the previous building identity in the

searching criteria in step one when handshaking, which improves efficiency and accuracy

of the newly arrived building.

5.1.5 Obtaining Map Data

After computing or receiving the locations, applications need a map to display the location.

Since every map data is stored in the lookup server, the application can request the map

data from the lookup server using the computed location. Other map retravel methods are

introduced in Section 5.3.

5.1.6 Site Owners’ Server

In mode 0 and 1, site owners do not share data with the lookup server so they should

host their servers to deal with applications’ requests. Mode 0 site owners need to host a

server for downloading their site signals while mode 1 site owners need to host a server

for computing location. The server should implement a specific list of APIs following

this standard so as to ensure that the application can call the desired APIs in different

buildings. The API specifications are in Chapter 8.

5.1.7 SDK for Applications

Applications need to contact many different servers to obtain the location services. If appli-

cations need to communicate with different parties via web APIs at a low level, it increases

the developer’s workload significantly. To facilitate the development of the application,

this standard defines an SDK for retrieving location service to reduce the workload of ap-

plication developers. Applications can handshake, download the site signals, connect to

13

site owner’s servers, download map data via a set of APIs in the SDK. The SDK guidelines

and API specifications are in Chapter 7.

5.1.8 A Holistic View of Communication Protocols

Figure 5.7: A holistic view of communication protocols

Before offering any location service, operation mode 2 and 3 site owners upload their

site signals maps to the lookup server, while operation mode 0 and 1 site owners only

upload maps to the lookup server, following the formats and procedures motioned in later

sections. Additional works for mode 0 and 1 site owners is that mode 0 site owners host a

server for querying their site signals and mode 1 site owners host a server for computing

location. Then both of them send the server address to the lookup server.

The trigger point of a location service is when an application calls the SDK for location

services. The SDK then contacts the lookup server to handshake to confirm data for

operation, including the operation mode, the server address for uploading user signals as

well as for requesting locations, the server address for downloading site signals, etc. After

that, the SDK processes the data and provides the location services to the application.

5.1.9 Application Authentication and Authorization

As site owners may not want any application to access their server directly in mode 0 and

1, some authentication techniques are needed to ensure the call is from the standard SDK

and the application is authorized. In this standard, JSON Web Token (JWT) [5] is used to

provide both the authentication and authorization of each function call to the site owner’s

14

server due to its simplicity and cross-domain functionality. A JWT, issued by the lookup

server, is attached in each function call, so site owners can authenticate the user.

Each JWT contains the information of the issuer, the subject and expiration time, and

it is digitally signed by the lookup server. Specifications of JWT claims can be found in

Chapter 8.

Application developers do not need to worry about much the design but to register

themselves in the lookup server and to obtain locations by procedures in following Chap-

ter 7.

5.2 Site Signal Data Organization, Retrieval and For-

mat

5.2.1 Overview

With communication protocols, applications can contact the right party to obtain the site

signal and map data, but it is also important to know how to retrieve the data correctly

and efficiently. That is, the data must follow an agreed data format so that every party

can interpret the data correctly, and the data can be retrieved with flexibility to support

efficient querying with a grid reference system.

5.2.2 Site Signal Formats

An agreed data format of site signals is needed to provide site signal data interoperability.

Currently, there is no agreed data format of site signals so that site signals are represented

in different measurements and styles by different organizations. For example, WIFI AP

signal strength can be measured by RSSI, dBm or other units, and the WIFI fingerprints

can be stored in a text file, a database, or other data storage systems. In this way, unless

an organization shares its data formats, others cannot interpret their site signals correctly.

Therefore, this standard defines the site signal data formats for WIFI fingerprint-based

and proximity-based systems:

Site signals for fingerprint-based systems are stored as reference points.

In a fingerprint-based system, site signals are the fingerprints that comprise reference

points. A reference point (RP) contains a location and a Received Signal Strength Indica-

15

Figure 5.8: The structure of a reference point

tion (RSSI) vector that is collected in this location. A location is represented as a latitude,

a longitude and a floor Id that represents the vertical information of the location. The

floor Id refers to the floor Id in map organization and is defined in Section 5.3. A RSSI

vector is a collection of the sensor’s identifications and their strength measurement. It is

stored as the MAC addresses of the sensors and the RSSI.

Site signals for proximity-based systems are stored as pairs of device Ids and

locations.

In a proximity-based system, site signals are the locations of the sensors. Currently, this

standard supports iBeacon only. Therefore, the beacon identification is stored as their

UUID, major and minor, and the location is stored as a latitude, a longitude and a floor

Id.

5.2.3 Grid Reference System

Inspired by Google map structure [14], a grid reference system is used as the data organi-

zation of site signals to support efficient querying. The major similarity of outdoor maps

and site signals is that users tend to load a specific area initially and the adjacent later on.

It is inefficient to load the site signals using the building as a unit, and a fine resolution

using grids is the preferred way to load the site signals.

There are three enhancements to the grid reference system to adopt the nature of site

signals:

1. The information of a grid is enriched since a grid does not only store a map and the

coordinates. The types of supported site signals and the signal data are stored in the

grid for site signals. Other location data structures, for example, the zoom level and

grid length, remain unchanged.

2. Vertical information is also needed for site signals. This standard represents grids in

16

2.5-D. It is stored as the floor Id of the site signals. The floor Id refers to the floor

Id in map organization and is defined in Section 5.3.

3. Adjacency is not the only connection between grids for site signals. Since users can

travel a long distance between grids, for example, via an elevator an escalator. They

can bring users from one grid to another grid that is far away, and the site signals

between the two distant grids may not be useful. For example, if a user travels from

6F to GF via an elevator, the fingerprints of other floors are unnecessary. Therefore,

this connection information is stored in a node-relation graph while grids are the

nodes and a relation represents the connection between two grids.

Figure 5.9: A grid reference system storing the site signals of a building

5.2.4 Site Signal Data Retrieval

Site signals are stored in site owner’s servers in operation mode 0 and 1 and in the lookup

server in mode 2 and 3. They need to store the site signals in a grid reference system,

following the data structure in section 6.1. With a common site signal data structure

(in grids), applications can retrieve site signals flexibly and unambiguously in an edge

approach. Grid is the basic unit of site signals, that is, applications retrieve data in grids

from the lookup server and site owners’ servers.

Site signals in the desired area can be retrieved by calling the predefined APIs. They

provide data retrieval in a few different ways:

1. In a circle by specifying the center and the radius

2. In a rectangular region by specifying the maximum and minimum latitude and lon-

gitude

3. In a building by specifying the building Id, floor by floor Id and region by region Id

17

4. In the connected grids of a grid that is loaded previously

The resolution when retrieving the site signals is determined by the zoom level. The

higher the zoom level, the finer grids will be retrieved. It is a tradeoff between efficiency

and memory storage since if applications retrieve finer grids, they can have less memory

occupied but they need to request more frequently when the users are moving.

The API specifications that the lookup server and site owners’ servers should follow are

in Chapter 8.

5.3 Map Data Organization and Retrieval

5.3.1 Overview

After applications compute or obtain a location, a map is needed for displaying the user

location. Since every map data is uploaded to the lookup server. It is important to manage

this large amount of data efficiently. In this standard, the lookup server stores the map

data with a multi-layered space model while embracing existing map standards.

5.3.2 Existing Standards

Unlike site signals, there are a few mainstream indoor map standards. The following

standards are supported:

1. Image formats including JPEG, PNG, and GIF. Images are well-known and common

ways to store maps.

2. Indoor Mapping Data Format (IMDF) [11] is another popular map standard recently.

It provides a general yet comprehensive model for indoor map data. It supports

efficient and mobile-friendly computations in edge devices. In addition, the model

can be used not only in map displaying but also other location-based applications

such as navigation, orientation, etc.

3. GeoJSONmulti-polygon type (https://datatracker.ietf.org/doc/html/rfc7946#section-

3.1.7) provides a fraction of functionalities of IMDF. It is less costly than IMDF but

it is also less expressive when representing the building structure. However, it can

be a good balance for some companies.

18

4. IndoorGML [12] aims to provide comprehensive 3D indoor spaces modelling for nav-

igation purposes. It is supported in this standard due to its potential usage in 3D

LBS applications.

5.3.3 Multi-Layered Space Model

Inspired by IndoorGML [12], a multi-layered space model (MLSM) is used in order to

manage complex indoor map data efficiently. A MLSM represents the same physical space

in different representations. Each layer is the partitioning of spaces in one representation.

In indoorGML, it is used to give the primal structure and different semantics, for example,

primal space layer, topology space layer, WIFI coverage as a layer to record the spaces

covered by each AP or a set of APs, etc. In this standard, the MLSM is designed in a way

that suits our situation best.

Figure 5.10: Multi-layered space model for managing map data

There are two domains in the MLSM, namely primal space domain and map data do-

main. Primal space domain represents the building hierarchical and topological information

while map data domain represents the details of the map data.

Primal space domain consists of three layers, namely building layer, floor layer and

region layer. Inter-layer connections (ILCs) represent the hierarchical structure of the

building. For example, an ILC between a building and a floor means the floor belongs to

19

the building (the blue dotted lines in Fig. 5.10). Topological information is stored in the

region layer for the finest resolution, shown as the gray lines in Fig. 5.10.

Map data also consists of three layers, namely map image layer, IMDF layer and In-

doorGML layer. Each layer stores the data of its type and the attached space of the data.

Each map data node contains the data that is necessary for display such as geodetic points

and boundary. The ILCs between two domains are the attachment of map data and its pri-

mal space. For example, the indoorGML file in Fig. 5.10 is attached to the lower building,

represented by the purple dotted line.

Site owners need to provide their maps, the hierarchical and topological information

of their building to the lookup server, following the validation check in Chapter 9. Then

the MLSM in the lookup server will store them and will be used to deal with applications’

map requests.

5.3.4 Map Data Retrieval

With the MLSM, map data retrieval can be very flexible. There are three approaches to

obtain maps:

1. By coordinates and constraints. Inputs specify a region, and the map data inside the

region is returned. For example, given a location (latitude, longitude) and a radius,

the map data inside that circle is returned.

2. By building, floor or region identity. Input is the Id of a specific building/ floor/

region, and the map data that is attached to this space and its children is returned.

For example, given a floor Id, the map data of this floor and the child regions is

returned.

3. By connections. Inputs are a source map Id and other requirements such as a direc-

tion, and the map data that is connected in the region layer is returned. For example,

given a map Id, the map data that its attached space is connected to the attached

space of the given map Id is returned.

More detailed descriptions and specifications are in Chapter 7.

20

6 Data Structures and Formats

Every party has to follow the same data formats to store, send and receive site spatial data

in order to ensure every party can retrieve and interpret the desired data correctly. In this

standard, we define:

1. A set of site signal data format and a grid data structure for site signal organization

2. A multi-layered space model for map data organization

Noted that this standard does not define the storing methods for the data but the data

structure since different parties may have different preference of their storage system such

as DBMS or simple text files. The detailed implementation for each party is described in

later sections.

6.1 Site Signal Data

In this section, we first define a set of site signal data formats for different types of site

signal, then we design a grid data structure to store site signals for efficient querying.

6.1.1 Site Signal Definition for Fingerprint-based System

In a fingerprint-based system, site signals are the fingerprints that comprise reference points

with the measurements of surrounding sensors. A reference point defined as follows:

21

Table 6.1: Site signal definition for fingerprint-based system

Attribute Data type Description

RP Id UUID The Id of the reference point

Latitude Number
The latitude of the reference point in

6 decimal places

Longitude Number
The longitude of the reference point

in 6 decimal places

Floor Id String

The floor Id of the reference point,

referencing the Id in map data struc-

ture

WIFI RSS vector Array

The WIFI RSS vector collected in

the reference point. Each element is

a ”mac:rssi” string, representing the

mac address and rssi value of each

AP. It is null if the WIFI RSS vector

is not supported.

BLE RSS vector Array

The BLE RSS vector collected in the

reference point. Each element is a

”uuid:major:minor:rssi” string, rep-

resenting uuid, major, minor, and

rssi of each beacon. It is null if the

BLE RSS vector is not supported.

Magnetic signal Array of number

An array of 3 elements that are the

geomagnetic field strength along the

x-, y-, and z-axis in µT .

6.1.2 Site Signal Definition for Proximity-based and range-based

System

In proximity-based and range-based systems, site signals are the locations of the sensors.

For BLE, each iBeacon is defined as follows:

22

Table 6.2: Site signal definition for proximity-based and range-based system

Attribute Data type Description

Beacon Id String

The Id of this iBeacon in this stan-

dard. The format is: UUID (in hex

string form) concatenates with Major

and Minor (in 5 digits)

Latitude Number
The latitude of the reference point in

6 decimal places

Longitude Number
The longitude of the reference point

in 6 decimal places

Floor Id/

Outdoor Site Id
String

In indoor environments, the floor Id

should be given. It is the floor of the

beacon’s location, referencing the Id

in the map data structure

In outdoor environments, the site Id

should be given, referencing to the

site Id in. Chapter 9. It is the site

that the beacon is in.

UUID String
The UUID of the beacon in the form

8-4-4-4-12

Major Number
The major value of the beacon, rang-

ing from 1 to 65535

Minor Number
The minor value of the beacon, rang-

ing from 1 to 65535

6.1.3 Grid Reference System

Site signals are stored in a grid reference system for efficient retrieval of site signals. Each

grid contains some site signals and topological information. A grid is defined as follows:

23

Table 6.3: Data structure of a grid

Attribute Data type Description

Grid Id String

The Id of the grid. The format is

the concatenation of zoom level, x-

index, y-index and floor Id. The Grid

Id for indoor site will consist of 37

digits: zoom level (2) + x-index (7) +

y-index (7) + buildingId (19) + floor

number (2). The Grid Id for outdoor

site will consist of 35 digits: zoom

level (2) + x-index (7) + y-index (7)

+ siteId (19). It is an extension to

the Google Grid ID system.

Zoom level Number
The zoom level of the grid, ranging

from 16 to 20

X-index Number
The x-index of the grid in this zoom

level

Y-index Number
The y-index of the grid in this zoom

level

Floor Id String

The floor Id of the beacon’s location,

referencing the Id in map data struc-

ture.

It is empty for outdoor grids.

Connected grid Ids Array The array of connected grid Ids

RP Id list Array
The array of RP Id that the reference

points are in this grid

Beacon Id list Array
The array of RP Id that the reference

points are in this grid

Zoom level describes the size of a grid

The higher zoom level, the grid is smaller. Each level n grid is composed of 4 level n+1

grids. At zoom level 0, there is only one grid representing the whole world. At zoom level

1, 2x2 grids cover the world. At zoom level 2, there are 4x4 grids, and so on.

24

X- and y-index are the column/row number of a grid

X-index is the column number counting in ascending order of longitude. Y-index is the row

number counting in ascending order of latitude. Both indexes range from 0 to 2(zoomlevel)−1.

The index is a 7-digit number.

Connected grid Ids are the grids that can be directly arrived from the current

grid

For example, if an escalator is from grid A to grid B, then grid B’s Id is in grid A’s

connected grid ids. If an elevator connects grids C, D, E, then they are in each other’s

connected grid Ids.

6.1.4 Equations Connecting Latitude, Longitude, and Grid Ref-

erence System

Latitude ranges from –90 to 90 and relates to y-index. Longitude ranges from

–180 to 180 and relates to x-index.

Figure 6.1: Grids at zoom level 1

25

This is the grids at zoom level 1. Besides the latitude and the longitude, the number

of grids in a row or in a column is 2zoomlevel.

Computing corner coordinates of a grid given x-, y-index and the zoom level z

Using Mercator projection formula, we come up with 4 equations:

minLon = x× gridwidth − 180

=
360x

2z
− 180;

maxLon = (x+ 1)× gridwidth − 180

=
360(x+ 1)

2z
− 180;

minLat =
180

π
× arctan(sinh(π − y + 1

2z
× 2π))

and

maxLat =
180

π
× arctan(sinh(π − y

2z
× 2π))

Computing x-, y-index given latitude and longitude at zoom level z

Using Mercator projection formula, we come up with 2 equations:

x =
⌊2z(lon+ 180)

360

⌋
and

y =
⌊
(1−

ln(tan(lat× π
180

) + 1
cos(lat× π

180
)
)

π
)× 2z−1

⌋
.

Computing x-, y-indexes of the next zoom level

A grid at zoom level z contains 4 grids at zoom level (z+1). Their indexes are: (2x, 2y),

(2x, 2y+1), (2x+1, 2y), (2x+1, 2y+1)

6.2 Map Data

Recall that this standard does not define new map standards but embraces the existing

map standards, such as images, IndoorGML, and IMDF, providing a multi-layered space

26

model for flexible and efficient map data retrieval from applications.

6.2.1 A Multi-layered Space Model

There are two domains in this model, namely primal space domain and map data domain.

The former describes the physical space hierarchical and topological information, while

the latter describes the map data. Note that the connections (edges) are stored in the

nodes like adjacency list. Therefore, nodes under each layer contain the layer as well as

the connection information.

Primal space consists of three layers – building, floor, region

The building layer contains hierarchical information about the building. It is defined as

follows:

27

Table 6.4: Data structure of the building layer

Attribute Data type Description

Building Id Hex string

The Building Common Spatial Unit Identifier

(CSUID) of the building. Building CSUID

consists of geo-reference number, polygon type

and creation date.

Geo-reference number: a 10-digit identifier

formed by combining the Easting and Nor-

thing of the building label point within the

polygon.

(Easting and Northing are from HK 1980 Grid

Coordinates, decimal is truncated and the first

digit is removed from the coordinates.)

Polygon type: ‘T’ or ‘P’. T for Tower, P for

Podium.

Creation Date: YYYYMMDD

e.g. BuildingId: “4520522021T20220412”

Name String The display name of the building

Child Ids Array

The array of child floor Ids, referencing floor

Id in the floor layer. It is sorted by elevation

ascendingly.

Default floor Id Hex string
The default floor of the building to be dis-

played

Data file Ids Array

The array of data file Ids that are attached

in the building, referencing the data file Id in

map data domain

28

The floor layer contains hierarchical information about the floor. It is defined as follows:

Table 6.5: Data structure of the floor layer

Attribute Data type Description

Floor Id Hex string
Building Id concatenates with the floor num-

ber

Floor number Hex string

An 8-bit hex string (2 letters) indicating the

floor number. The first bit is 0 if it is above

ground, 1 if lower ground. The remaining 7

bits are the magnitude of the floor, relative to

the default floor of the building. For example,

if the default floor is G/F: 01 = 00000001(2) is

the 1/F, and 84 = 10000100(2) is the LG 4/F

Remarks: 00000000 is G/F while 10000000 is

invalid

Name String
The display name of the floor excluding the

building name.

Parent Id Hex string The parent building Id

Child Ids Array
The array of region Ids, referencing region Id

in the region later

Default region Id Hex string The default region of the floor to be displayed

Data file Ids Array

The array of data file Ids that are attached

in the building, referencing the data file Id in

map data domain

The region layer contains hierarchical and topological information about the region. It

is defined as follows:

29

Table 6.6: Data structure of the region layer

Attribute Data type Description

Region Id Hex string Floor Id concatenates with the region number

Region number Hex string
An 8-bit hex string (2 letters) indicating the

region number

Name String
The display name of the region excluding the

floor name

Parent Id Hex string The parent floor Id

Data file Ids Array

The array of data file Ids that are attached

in the building, referencing the data file Id in

map data domain

Connected regions Array

This describes the transition regions and their

arrival regions of this region in this form:

[transition region: [arrival region1, ...]]

A transition region is described as [minLon,

minLat, maxLon, maxLat]

An arrival region is described as regionId: id,

area: [minLon, minLat, maxLon, maxLat]

Map data domain stores each type of map in one layer

Currently, this standard only supports image, IMDF and IndoorGML, and they are stored

in the same structure. It is defined as follows:

30

Table 6.7: Data structure of the map domain

Attribute Data type Description

Data Id UUID The Id of the map

Format String
The format of the map, e.g., jpg, png, in-

doorgml, imdf, etc.

Geodetic points Array

The array of geodetic points. Each geodetic

point contains a coordinate in the map and a

[lon,lat] pair. The array contains at least 2

geodetic points.

Both the latitude and longitude are in 6 deci-

mal places

Boundary Array
The array of [lon,lat] of the boundary of the

image

Attached primal

space
Hex string

The attached primal space Id. It can be a

building Id, floor Id and region Id.

Data Byte The data content of the image

31

7 SDK API Specifications for Mobile

Application Developers

This section is written for mobile developers who want to implement pervasive positioning

in their apps. To start off, developers should read the “Guideline for implementing per-

vasive positioning” to get an overview of SDK usage and read the “Detail specification of

SDK” to understand classes and API interface in SDK for your application development.

7.1 Guideline for Implementing Pervasive Positioning

7.1.1 Initialization Step

The first step of pervasive positioning is to initialize the Global Positioning System to get

an initial location. This GPS result will help your application to start handshaking with

the pervasive positioning platform in the following steps.

Next, detect whether the user is under an indoor or outdoor environment. You can

either:

1. use detectIndoorEnviroment(lat,lon,accuracy) in our Localization Assistant of SDK;

or

2. implement your own indoor-outdoor environments detection algorithm.

This detection result will help your application to make decisions between using indoor

positioning technology or using outdoor positioning technology.

7.1.2 Indoor Localization

If you want to implement indoor positioning, you should follow the steps below:

32

1. Detect which building you have entered

2. Decide whether to share user signals for localization

3. Get localization service from platform or site server

4. Compute or receive indoor location

5. Get map for display and navigation from platform

6. Check if the user entered switch zone periodically

1. Detect which building you have entered

This step helps you to discover the correct building from your GPS location or indoor

location. Each building will have their own settings on providing indoor localization, some

may share a variety of site signals, and some may only provide their own cloud localization

service for users. Discover the building where your device is inside will help the SDK

retrieve correct settings for your indoor localization.

Developers should call discoverBuilding(latitude, longitude, accuracy) in our API Man-

ager of SDK. SDK will contact the platform to download building’s localization settings

and cache them in API Manager for further usage. Remember to keep the return value of

discoverBuilding(latitude, longitude, accuracy), you will use it in the next step.

2. Decide whether to share user signals for localization

After you discover the current building, you will need to decide which localization approach

you want to use in this building. Localization approach support by the current build-

ing is indicated by the returned string of discoverBuilding(latitude, longitude, accuracy),

“cloud”, “edge” or ”all available”. Developer can adapt supported approach to get local-

ization service.

This decision should be made according to your application’s security concerns. As

adapting cloud approach requires you to share user signals with cloud server, it will reveal

user’s location to the service provider. Developers who wish to keep high location security

should priorities edge approach rather than cloud approach. During implementation, we

recommend developers to implement your localization in a prioritize logic to support both

edge localization and cloud localization. You can consider to only adapt one approach

33

in your app, but remember you may not be able to support buildings who only support

another approach.

No matter what approaches you choose, we must acquire an authentication token

through generateToken(appID,key) first. This token will grant your access to location

service provided by platform and site servers. If your appID and key is authorized by the

platform, a token will be generated and keep in API Manager for getting location services.

If you decide to implement edge localization and try to get a site signal package, go to

3a. For implementation of cloud approach, go to 3b.

3. Get localization service from platform or site server

Edge approach This step helps you to initialize indoor edge localization in the cur-

rent building. First, call getGridIDListForEdgeLoc() API to get the gridID list by pa-

rameters. GridID list describes areas you want to download site signal. Then, call

downloadSiteSignal() API to retrieve site signals data from the platform or site owner’s

server.

Cloud approach This step helps to you initialize indoor cloud localization in the current

building. First, call getSignalTypeForCloudLoc() API to get the required signal type

of cloud localization algorithm. You will need to scan these types of signals for cloud

localization. Then, call uploadSignalToCloud() API to upload user ID and user signals to

the platform or site owner’s server.

4. Compute or receive indoor location

For edge approach, you can use the return site signals from API in your indoor edge

localization algorithm, and compute a user’s location.

For cloud approach, you can call getCloudLocResult() to download user location com-

puted by cloud server.

5. Get map for display and navigation from platform

After you have gathered a user’s location, you need to download a map to display the

location on your application.c API to search all available maps for your location or desired

floor. You should choose a mapID that matches your desired level of spatial representation

and your displayable filetype. After you get your desired mapID and map filetype, use

34

them in getMapFile(filetype,mapID) to download actual map file. Remember to deserialize

returned byte array to actual map file.

6. Detect switch condition periodically for switching localization services

In the indoor positioning, users may walk across multiple buildings or go to an outdoor

environment. You will need to switch to indoor localization service of another building,

or switch to outdoor localization service. Therefore, you have to implement a switch zone

detect mechanism. SDK provided a reference design: detectSwitchCondition(location)

API. This API is used to check if your indoor location falls inside a switch zone to another

building or the outdoor environment. If the user is going into another building, the API

returns a Building ID. If the user is going to an outdoor environment, the API returns an

“Outdoor” tag for indication.

If switch building condition is detected, you will need to handshake with another build-

ing and use their localization service. You may go back to step 1 of indoor localization,

and find building settings with connected Building ID to start again. You will need to

add connected = True in some API call to indicate you wants to get localization service of

connected building, so that localization service from current building won’t be affect.

On the other hand, if switch outdoor condition is detected, you should switch to use

outdoor localization service.

7.1.3 Outdoor localization

For outdoor localization, you can either use GPS results directly or implement your outdoor

localization algorithm with outdoor signals.

If you want to get outdoor signals, such as Smart Lampposts, you should first call

discoverOutdoorSite(latitude,longitude,radius) to find the correct outdoor site who have

outdoor signals. Then call getOutdoorSignal(latitude,longitude,radius,siteSignalMode) to

get nearby outdoor signal information from the Pervasive Positioning Platform or Site

owner server.

7.2 Detailed Specifications

SDK will be responsible for handling handshaking protocol and acquiring necessary infor-

mation for pervasive localization from the platform.

35

SDK will consist of three parts:

Data Classes Classes for representing data in handshaking. Spatial

representation, signal grids, raw signals, etc.

API Manager Handling handshaking API calls, retrieving necessary data

from platform database, returning Data class object to the

caller

Localization Assistant Reference design algorithms for pervasive localization

(in-outdoor detection, switch condition detection)

7.2.1 Data Classes

Classes for handling API response data, such as Building, Floor, Region in Spatial rep-

resentation, Building Signal Object, Grid Object, raw signal and Location Object in site

signal standard.

These data classes assist in the handshaking process and initialization of localization

service, most of the API results will return as a Data class, so developers are recommended

to use these classes for data handling as well.

For handshaking convenience, some of the data will be kept in the API Manager as

current state information (BuildingID, GridID, connection information)

Data Classes for Spatial Representation

public abstract class SpatialObj

extends Object

Member Type Description

ID String ID of SpatialObj

name String Display name of SpatialObj

mapDataID List<String> ID of map file that represents this SpatialObj

connectedList List<Connection> A list of connections represents connection

area towards other SpatialObj

36

public class BuildingObj

extends SpatialObj

Inheritance Member Type Description

Inherited

member

ID String ID of building, CSUID of building

name String Display name of building

mapDataID List<String> ID of map file that represents this

building

connectedList List<Connection> A list of connections represents

connection area towards other

BuildingObj

floorList List<FloorObj> A list of floors contained by this

BuildingObj

defaultFloorID String ID of FloorObj that is located on

ground level

public class FloorObj

extends SpatialObj

Inheritance Member Type Description

Inherited

member

ID String ID of floor

name String Display name of floor

mapDataID List<String> ID of map file that represents this

floor

connectedList List<Connection> A list of connections represents

connection area towards other

FloorObj

floorNo String An 8-bit hex string (2 letters)

indicating the floor number,

referencing to Section 6.2

regionList List<RegionObj> A list of RegionObj contained by this

FloorObj

defaultRegionID String ID of RegionObj that acts as default

region

37

public class RegionObj

extends SpatialObj

Inheritance Member Type Description

Inherited

member

ID String ID of region

name String Display name of region

mapDataID List<String> ID of map file that represents this

region

connectedList List<Connection> A list of connections represents

connection area towards other

RegionObj

contraints Constraint Constraints contained by this

RegionObj, indicating the walkable

area of this region to improve the

localization accuracy.

grid List<String> The array of 2D grid Ids in zoom

level 20 occupied by this region. The

specified area should be supported

with location services.

public class MapObj

extends Object

Member Type Description

ID String ID of map

mapType String Type of map,

PNG/JPEG/IMDF/IndoorGML

geodetic List<GeodeticPoint> A list of geodetic points that represent

projection of map coordinate system to

WGS84 coordinate system

Grid List<String> A list of grid Ids representing occupied

grids of this map.

attachedPrimal

SpaceID
String Spatial ID of building/floor/region

represented by this map

filename String Filename of actual map file

fileContent byte[] Byte array of map file content

38

Data Classes for Site Signal Standard

public class BuildingLocSetting

extends Object

Member Type Description

ID String ID of Building, same as BuildingObj

grids List<String> A list of 2d grid Ids representing the area

supported by this building

supportedFloors List<String> A list of floor numbers indicating the

floors supported with localization service.

operationMode List<String> A list of localization operation modes that

are available in this building. Modes will

be represented in [0,1,2,3]

siteSignalMode List<String> A list of site signals available in this

building.

cloudLocSignalMode List<String> A list of user signals needed by the cloud

localization service of this building

relatedGridList List<String> A list of Grid ID which related to this

building

cloudLocSync Boolean A boolean descriptor to indicate what

cloud localization approach will be used in

this building. (only for Mode 1)

remoteSignalDownloadURL URL URL for download site signal from site

owner’s server

remoteCloudLocUploadURL URL URL for uploading users’ signals (required

by cloudLocSignal) to site owner’s cloud

localization service

remoteCloudLocDownloadURL URL URL for download user location from site

owner’s cloud localization service

remoteCloudLocSyncURL URL URL for computing the location

synchronously.

remoteCloudSignalModeURL URL URL for getting signal mode supported

from the site server.

39

public class GridObj

extends Object

Member Type Description

ID String ID of Grid

boundary List<Point> A list of (latitude, longitude) points

representing boundary of grid

connectedGridID List<String> A list of grid id which connected to

current grid in one hop

public class SignalObj

extends Object

Member Type Description

ID String ID of SignalObj

coordinate Point Reference point of SignalObj in (latitude,

longitude)

floorID String ID of FloorObj where this SignalObj

locate at

public class WiFiFingerprintObj

extends SignalObj

Inheritance Member Type Description

Inherited

member

ID String ID of WiFiFingerprintObj

coordinate Point Reference point of

WiFiFingerprintObj in (latitude,

longitude)

floorID String ID of FloorObj where this

WiFiFingerprintObj locate at

rssiVecList List<Wifi> A list of wifi rssi signal

40

public class BLELocationObj

extends SignalObj

Inheritance Member Type Description

Inherited

member

ID String ID of BLELocationObj

coordinate Point Reference point of BLELocationObj

in (latitude, longitude)

floorID String ID of FloorObj where this

BLELocationObj at

UUID String UUID of BLE device

major String Major of BLE device

minor String Minor of BLE device

txPower Integer Transmission power of BLE device

public class MagFingerprintObj

extends SignalObj

Inheritance Member Type Description

Inherited

member

ID String ID of MagFingerprintObj

coordinate Point Reference point of

MagFingerprintObj in (latitude,

longitude)

floorID String ID of FloorObj where this

MagFingerprintObj locate at

magneticVecList List<Magnetic> A list of magnetic signal

Data Class for Raw Signal

public class WiFi

extends Object

Member Type Description

mac String Mac address of received WiFi signal

rssi Double Receive signal strength indicator in dBm

freq Integer Frequency of received WiFi signal

41

public class ReceivedWiFiSignal

extends WiFi

Inheritance Member Type Description

Inherited

member

mac String Mac address of received WiFi signal

rssi Double Receive signal strength indicator in

dBm

freq Integer Frequency of received WiFi signal

timestamp Long A received Unix timestamp of WiFi

signal

public class BLE

extends Object

Member Type Description

UUID String UUID of received BLE signal

major String Major of received BLE signal

minor String Minor of received BLE signal

rssi Integer Receive signal strength indicator in dBm

txPower Integer Transmission power level received in BLE signal

public class ReceivedBLESignal

extends BLE

Inheritance Member Type Description

Inherited

member

UUID String UUID of received BLE signal

major String Major of received BLE signal

minor String Minor of received BLE signal

rssi Integer Receive signal strength indicator in

dBm

txPower Integer Transmission power level received in

BLE signal

timestamp Long A received Unix timestamp of BLE

signal

42

public class Magnetic

extends Object

Member Type Description

mag x Double Magnetic field reading of x-axis

mag y Double Magnetic field reading of y-axis

mag z Double Magnetic field reading of z-axis

public class ReceivedMagneticSignal

extends Magnetic

Inheritance Member Type Description

Inherited

member

mag x Double Magnetic field reading of x-axis

mag y Double Magnetic field reading of y-axis

mag z Double Magnetic field reading of z-axis

timestamp Long A received Unix timestamp of

magnetic signal

Data Class for Coordinate Related Object & Point of Interest(PoI)

public class Point

extends Object

Member Type Description

lat Double Latitude of this point in WGS84 coordinate system

lon Double Longitude of this point in WGS84 coordinate system

public class GeodeticPoint

extends Point

Inheritance Member Type Description

Inherited

member

lat Double Latitude of this point in WGS84 coordinate

system

lon Double Longitude of this point in WGS84 coordinate

system

x Double x-axis coordinate of map coordinate system,

which is different from WGS84

y Double y-axis coordinate of map coordinate system,

which is different from WGS84

43

public class Location

extends Point

Inheritance Member Type Description

Inherited

member

lat Double Latitude of this point in WGS84 coordinate

system

lon Double Longitude of this point in WGS84 coordinate

system

floorID String ID of the Floor where this location is at

public class Connection

extends Object

Member Type Description

transitionArea RegionConnectora region connector representing a transition area.

arrivalAreaList
List

<RegionConnector>
Array of RegionConnector representing all connected

areas that connects to current transition area.

public class RegionConnector

extends Object

Member Type Description

RegionID String ID of region where this region connector locate at.

Name String Name of connector, the naming convention is the

concatenation of the type of connector and a number.

(e.g. Lift 1, Escalator 10)

Tag String The tag is an optional attribute to briefly describe the

nature of this connection for potential localization

optimiza- tion. Available tags are ”Elevator”,

”Escalator”, ”Stair”, ”Door”, ”Ramp”, and ”Other”

geometry List <Point> a list of [lon,lat] points to describe the poly-line of the

transitional area.

44

public class Constraint

extends Object

Member Type Description

outConstraint List<Point> A polygon representing outermost constraint of the

spatial object (building/floor/region).

inConstraints
List<List<

Point >>
Array of polygon representing constraints of the spatial

object (building/floor/region) located inside the

outConstraint.

7.2.2 API Manager

API Manager is a singleton class to provide API call interface for developers. For any

needs to communicate with the platform to retrieve data for localization, the developer

should call this API Manager for solutions.

45

API List

Constructor

1. APIManager getInstance()

Initialize handshaking

1. HashMap<String, List<String>> discoverBuildingList(double latitude, double longitude, double accuracy)

2. String initializeBuildingObjInManager(String buildingID)

3. Boolean removeBuildingObjInManager(String buildingID)

4. Boolean generateToken(String appID, String key)

Indoor edge localization

1. List<String> getGridIDListForEdgeLoc(String buildingID, double latitude, double longitude, double radius)

2. List<String> getGridIDListForEdgeLoc(String buildingID, Location location)

3. List<String> getGridIDListForEdgeLoc(String buildingID)

4. JSONArray downloadSiteSignal(String buildingID, String siteSignalMode, List<String> gridIDList)

Indoor cloud localization

1. List<String> getSignalTypeForCloudLoc(String buildingID)

2. void uploadSignalToCloud(String buildingID, String userID, JSONArray userSignal)

3. Location getCloudLocResult(String buildingID, String userID)

Outdoor localization

1. List<String> discoverOutdoorSite(double latitude, double longitude, double accuracy)

2. Boolean initOutdoorSite(String outdoorSiteID)

3. Boolean removeOutdoorSite(String outdoorSiteID)

4. JSONArray getOutdoorSignal(String outdoorSiteID, double latitude, double longitude, double radius, String

siteSignalMode)

Get map data for display

1. JSONObject getMapData(@Nullable String SpatialID)

2. JSONObject getMapData(Location location)

3. MapObj getMapObj(String mapID)

4. byte[] getMapFile(String fileType, String mapID)

46

Get building information

1. BuildingObj getBuildingObjByID(String BuildingID)

2. BuildingLocSetting getBuildingLocSettingByID(String BuildingID)

3. List<String> getSignalModeByID(String BuildingID)

API Specification

Constructor

APIManager getInstance()

Constructor of singleton class APIManager, any developer who wants to call API to get

localization service should get instance by this function.

Input Parameter

Parameter

name
Data type Mandatory Description

- - - -

Return value

Data type Mandatory Description

APIManager Yes Return static instance of APIManager.

Initialize handshaking

47

HashMap<String, List<String>> discoverBuildingList(double latitude, double longitude,

double accuracy)

This function is used for finding all buildings near the device. This attempt will calculate all

the grids covered in the GPS location, and list out all the related building ID. For example,

Building P,Q and R has 3 grids covered by the GPS location, the function will return a

HashMap with buildingID as key and List of gridID as value

Input Parameter

Parameter

name
Data type Mandatory Description

latitude double Yes Latitude of GPS result

longitude double Yes Longitude of GPS result

accuracy double Yes Accuracy of GPS result

Return value

Data type Mandatory Description

HashMap<String,

List<String>>
Yes A HashMap to indicate the buildings which near the GPS

location, the HashMap will have BuildingID as key and

the corresponding gridID list as value

String initializeBuildingObjInManager(String BuildingID)

This function is used for initialize BuildingSpatialObj and BuildingLocSettingObj by the

given BuildingID. The APIManager will call web API hosted on platform to retrieve spa-

tial information and localization settings of the building, then store it in its class member

HashMap¡String,BuildingObj¿ Buildings and HashMap¡String,BuildingLocSetting¿ Buildin-

gLocSettings

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes
ID of a Building, the format should conform

Building CSUID

Return value

Data type Mandatory Description

String Yes A string to indicate this building support which localiza-

tion approach, return ”cloud”, ”edge” or ”all available”

48

Boolean removeBuildingObjInManager(String BuildingID)

This function is used for removing BuildingObj and BuildingLocSetting from APIManager

Input Parameter

Parameter

name
Data type Mandatory Description

BuildingID String Yes
ID of a Building, the format should conform

Building CSUID

Return value

Data type Mandatory Description

Boolean Yes Return true if the obj remove successful; otherwise, return

false.

Boolean generateToken(String appID, String key)

This function will authenticate your access right with appID-key pair, and generate a token

if you are an authorized developer. The APIManager will manage the token internally and

refresh it periodically with appID-key pair.

Input Parameter

Parameter

name
Data type Mandatory Description

appID String Yes The registered appID on the platform.

key String Yes The registered key with appID on platform.

Return value

Data type Mandatory Description

Boolean Yes Return true if token generate successfully. Otherwise, re-

turn false.

Indoor edge localization

49

List<String> getGridIDListForEdgeLoc(String buildingID , double latitude, double longi-

tude, double radius)

This function is used to find Grid ID lists of the targeted building covered by (latitude,

longitude, radius) area, these GridID List will later be used for getting site signals.

It is recommended to use it when you don’t have an indoor location. For example, the first

time to request site signals in building.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes
ID of targeted building, API manager will get

Grid ID in this building.

latitude double Yes Latitude of GPS result

longitude double Yes Longitude of GPS result

radius double Yes

A radius decided by the developer, this value

will determine how many signals are re-

quested for indoor localization. For example,

if you want to get site signals within 20m ra-

dius of your location, set radius = 20.0

Return value

Data type Mandatory Description

List<String> Yes Return list of gridID covered by latitude, longitude, radius

50

List<String> getGridIDListForEdgeLoc(String buildingID, Location location)

This function will find a list of Grid IDs. The current grid which the user’s location is

located, and grids connected to the current grid in one hop, will be put in the Grid ID list.

This GridID List will later be used for getting site signals.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes
ID of targeted building, API manager will get

Grid ID in this building.

location Location Yes Indoor location of the user

Return value

Data type Mandatory Description

List<String> Yes Return list of gridID that have a close relation with current

user location.

List<String> getGridIDListForEdgeLoc(String buildingID)

This function will find a list of Grid IDs that are related to buildingID, helping callers to

get all site signals in building.

This GridID List will later be used for getting site signals.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes A decided buildingID provided by caller

Return value

Data type Mandatory Description

List<String> Yes Return list of gridID that are related to decided building

51

JSONArray downloadSiteSignals(String buildingID, String siteSignalMode, List<String>

gridIDList)

This function will download site signals covered by gridIDList with one siteSignalMode filter

from the targeted building .

Input Parameter

Parameter

name
Data type Mandatory Description

building String Yes
ID of targeted building, API manager will get

site signals in this building.

siteSignalMode String Yes
siteSignalMode tag that indicates the type of

site signal you want to download.

gridIDList List<String> Yes
List of gridID you get by calling getGri-

dIDListForEdgeLoc()

Return value

Data type Mandatory Description

JSONArray Yes Return site signals covered by gridIDList in JSON Object

array.

e.g. [{WiFiFingerprintObj}]

Indoor cloud localization

List<String> getSignalTypeForCloudLoc(String buildingID)

This function will get the types of user signals needed by the cloud localization service of

desired building.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes
ID of targeted building, API manager will get

signal types of this building.

Return value

Data type Mandatory Description

List<String> Yes Return list of tags that indicate the type of user signals to

be uploaded in UploadSignaltoCloud()

e.g. [‘WiFi’,’BLE’,’Magnetic’]

52

void uploadSignalToCloud(String buildingID, String userID, JSONObject userSignal)

This function will upload userID and userSignal to the cloud localization server of desired

building according to the decided mode.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes

ID of the targeted building, API manager will

upload signal to the cloud localization server

of the targeted building.

userID String Yes ID to indicate your identity on cloud server

userSignal JSONObject Yes

The user signals to be uploaded, each type of

signals should be associated with their type

name.

e.g. {
”wifiRssVector”: [{

”mac”:”c412f5c5bf48”,

”rssi”:-84,

”freq”:2,

”timestamp”:142081941240},...],
”bleRssVector”: [{

”uuid”: uuid,

”major”: major,

”minor”: minor,

”rssi”: rssi,

”txPower”: tx power,

”timestamp”: unix timestamp

}, ...]
}

Return value

Data type Mandatory Description

- - -

53

Location getCloudLocResult(String buildingID, String userID)

This function will get the user location by userID from cloud localization server of the desired

building.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes

ID of the targeted building, APIManager will

get user location from the cloud localization

server of the targeted building.

userID String Yes ID to indicate your identity on cloud server

Return value

Data type Mandatory Description

Location Yes User indoor location provided by cloud localization server

Outdoor localization

List<String> discoverOutdoorSite(double latitude, double longitude, double accuracy)

This function is used to find outdoor sites the device is nearby. This attempt will list all

outdoor site ID in descending order of coverage in the GPS location.

Input Parameter

Parameter

name
Data type Mandatory Description

latitude double Yes Latitude of GPS result

longitude double Yes Longitude of GPS result

accuracy double Yes Accuracy of GPS result

Return value

Data type Mandatory Description

List<String> Yes Return a List of OutdoorSiteID, the ID are sorted in de-

scending order of coverage in the GPS location.

54

boolean initializeOutdoorSite(String outdoorSiteID)

This function is used to initialize OutdoorSiteObj in the APIManager. APIManager will

download OutdoorSite information according to the given OutdoorSiteID.

Input Parameter

Parameter

name
Data type Mandatory Description

outdoorSiteID String Yes ID of targeted Outdoor Site

Return value

Data type Mandatory Description

boolean Yes Return true if initialization successful; otherwise, return

false.

Booelan removeOutdoorSite(String outdoorSiteID)

This function is used to remove OutdoorSiteObj and OutdoorLocSetting in the APIManager.

Input Parameter

Parameter

name
Data type Mandatory Description

outdoorSiteID String Yes ID of targeted Outdoor Site

Return value

Data type Mandatory Description

List<String> Yes Return true if removed successfully; otherwise, return

false.

55

JSONArray getOutdoorSignal(String outdoorSiteID, double latitude, double longitude, dou-

ble radius, @Nullable String siteSignalMode)

This function will get the outdoor signal covered by latitude, longitude, radius with the

decided siteSignalMode filter from the targeted outdoor site.

Input Parameter

Parameter

name
Data type Mandatory Description

outdoorSiteID String Yes ID of the targeted outdoor site

latitude double Yes Latitude of GPS result

longitude double Yes Longitude of GPS result

radius double Yes

A radius decided by the developer, this value

will determine how many signals are re-

quested for indoor localization.

For example, if you want to get site signals

within 20m radius of your location, set radius

= 20.0

siteSignalMode String No

Site signal mode tag to indicate the type of

outdoor signal you want to download.

Default value is ”BLELocation”

Return value

Data type Mandatory Description

JSONArray Yes Outdoor signal covered by latitude, longitude, radius with

the decided siteSignalMode filter. For siteSignalMode =

”BLELocation”, the return value should be an array of

BLELocation JSON objects. An exmaple is shown below

the table.

Example:

[

{

"UUID":"b19af004-7f2a-4972-8f39-37d26c29cb9a",

"major":"10001",

"minor":"10001",

"txPower":0,

"ID":"b19af004-7f2a-4972-8f39-37d26c29cb9a1000110001",

56

"coordinate":{

"lat":22.428721,

"lon":114.209055

},

"OutdoorSiteID":"3984531850O20220423"

},

{

"UUID":"b19af004-7f2a-4972-8f39-37d26c29cb9a",

"major":"20001",

"minor":"10001",

"txPower":0,

"ID":"b19af004-7f2a-4972-8f39-37d26c29cb9a2000110001",

"coordinate":{

"lat":22.428721,

"lon":114.209055

},

"OutdoorSiteID":"3984531850O20220423"

}

]

Get map data for display

57

JSONObject getMapData(String spatialID)

This function will search all maps that links to the family of the given spatialID, and return

their map id and map type to caller. For example, given a floorID, maps links the parent

buildingObj, its floorObj and its child regionObj will be consider to return their mapID and

mapType to caller.

Input Parameter

Parameter

name
Data type Mandatory Description

spatialID String Yes
spatialID of the building you want to down-

load, either buildingID, floorID or regionID.

Return value

Data type Mandatory Description

JSONObject Yes Return JSON Object links to SpatialID. This JSON Ob-

ject contain three key pairs.

”building” store array of mapid, maptype under building

level, all JSONObject in this level should cover all floor

and region under this building.

”floor” store array of mapid, maptype under floor level,

all JSONObject in this level should cover all region under

this floor.

”region” store array of mapid, maptype under region level.

An example is shown under the table.

Example:

{

"building": [{"mapid":"xxxxxxxxxx","maptype":"PNG"}],

"floor": [{"mapid":"xxxxxxxxxx","maptype":"PNG"}],

"region": [{"mapid":"xxxxxxxxxx","maptype":"PNG"}]

}

58

JSONObject getMapData(Location location)

This function will search all map that covers location, and return their map id and map type

to caller.

Input Parameter

Parameter

name
Data type Mandatory Description

location Location Yes User indoor location

Return value

Data type Mandatory Description

JSONObject Yes Return JSON Object links to Location. This JSON Object

contain three key pairs.

”building” store array of mapid, maptype under building

level, all JSONObject in this level should cover all floor

and region under this building.

”floor” store array of mapid, maptype under floor level,

all JSONObject in this level should cover all region under

this floor.

”region” store array of mapid, maptype under region level.

An example is shown before this table.

MapObj getMapObj(String mapID)

This function will find the MapObj required by mapID, and return it to caller.

Input Parameter

Parameter

name
Data type Mandatory Description

mapID String Yes The mapID of the targeted map

Return value

Data type Mandatory Description

MapObj Yes If a MapObj is found by mapID, return MapObj. If

MapObj is not found, return null.

59

byte[] getMapFile(String filetype, String mapID)

This function will download the zipped map required by filetype and mapID, and return the

map to caller in byte array format.

Input Parameter

Parameter

name
Data type Mandatory Description

filetype String Yes Map file type you want to get

mapID String Yes Map ID of the map you want to get

Return value

Data type Mandatory Description

Byte[] Yes If a map file of fileType is found, return a zipped map file

that is serialized into a byte array. If fileType is not found,

return null.

Get building information

BuildingObj getBuildingObjByID(String buildingID)

Getter of BuildingObj, help developers in handshaking.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes ID of the targeted building

Return value

Data type Mandatory Description

BuildingObj Yes Return BuildingObj of the targeted building. Otherwise,

return null.

60

BuildingLocSetting getBuildingLocSettingByID(String buildingID)

Getter of BuildingLocSetting, help developers in handshaking.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes ID of the targeted building

Return value

Data type Mandatory Description

BuildingLocSettingYes Return BuildingLocSetting of the targeted building. Oth-

erwise, return null.

List<String> getSignalModeByID(String buildingID)

Getter of signalMode provided by the desired building, which indicates the type of signal

available for indoor localization in this building.

Input Parameter

Parameter

name
Data type Mandatory Description

buildingID String Yes ID of the targeted building

Return value

Data type Mandatory Description

List<String> Yes Return signalMode of the desired building. Otherwise, re-

turn null.

7.2.3 Localization Assistant

This class provides reference designs for the implementation of indoor localization done by

developers. They are mostly related to making decisions with the device’s state (indoor

or outdoor, switch condition, etc.). You can call Localization Assistant API instead of

implementing your own algorithm.

61

Indoor outdoor detection

Boolean detectIndoorEnviroment(double latitude, double longitude, double accuracy, @Nul-

lable double threshold)

This function is to detect whether the device is in an indoor or outdoor environment. The

accuracy of GPS result will reflect the level of blockage of satellite signals. If the accuracy

> threshold, we consider satellite signals were blocked by the indoor environment, and vice

versa.

Input Parameter

Parameter

name
Data type Mandatory Description

latitude double Yes Latitude of GPS result

longitude double Yes Longitude of GPS result

accuracy double Yes Accuracy of GPS result

threshold double No
Threshold to determine indoor environment,

default is 30m

Return value

Data type Mandatory Description

Boolean Yes True if accuracy > threshold, indicating indoor environ-

ment. Otherwise, it returns false to indicate the outdoor

environment.

62

Switch zone detection

String detectSwitchCondition(Location location)

This function will check if location fall inside switch zone that exits current building, and

return connected buildingID or ”Outdoor” tag.

Input Parameter

Parameter

name
Data type Mandatory Description

location Location Yes Indoor location of device

Return value

Data type Mandatory Description

String Yes If the location is inside the switch zone to another building,

return connectedID of switch zone (buildingID).

If the location is inside an existing zone to outdoor, return

”Outdoor”. Otherwise, return ”Null”.

63

8 Server Specifications for Site Own-

ers

In mode 0 and 1, site owners should host their servers to deal with applications’ requests

following specifications in this section. Mode 0 site owners need to host a REST API

server for downloading their site signals while mode 1 site owners need to host a server for

computing location.

8.1 API URL

This is the REST API structure that is used in mode 0. Each API URL consists of a

scheme, a host, a path and an optional query string.

Figure 8.1: Structure of an API URL

• Scheme:

The scheme is HTTPS by default.

• Host:

The host is the server address of the site owner’s server. Site owners need to upload

this information to the lookup server after setting up the server.

• Path:

The path is an identifier of the service. The path of each service is defined in this

standard, and site owner’s developers should follow the design to set up the server.

64

• Query string:

The query string is one of the methods to send input parameters of the API to the

server, and it is used in the GET methods.

In this standard, we specify the path and query string of an API URL. The host is

determined by site owners, and the information is uploaded to the lookup server following

instructions in section 9.

The path and query string are expressed as <path>?<query name, value pairs>, and

the query value is denoted inside the curly braces. For example, in ”/grid-id?zoomLevel=zoomLevel”,

”/grid-id” is the path, ”zoomLevel” is the query parameter name, the curly brace denotes

the value of ”zoomLevel” query parameter. The curly brace is for easy reading only and

will be removed in the real API call. That is, an instance of the example API could be

”/grid-id?zoomLevel=19”.

8.2 Mode 0 - APIs for Downloading Site Signals

Site owner’s server returns their site signals upon the user’s request in different searching

criteria. Site owner’s developers need to set up a REST API server with API URL indicated

in Section 8.1.

8.2.1 GET - Request Signal Modes

GET /signal-modes

Return the supported signal modes that are available for applications.

Input Parameter

Name Data type Mandatory Description

- - - -

Response

Name Data type Description

signalModes JSON array The array of signal modes. Signal mode tags are:

”WiFiFingerprint”, ”BLEFingerprint”, ”MagFinger-

print”, ”BLELocation”

Format:

65

{

"signalModes": [

"signal mode_1", "signal mode_2", ...

]

}

8.2.2 GET - Request GridIds

GET /grid-id?zoomLevel={zoomLevel}
Return the gridIds given the query parameters:

If no query parameter is given, return all gridIds in the site.

If zoom level is given, return the gridIds in that zoom level.

Input Parameter

Name Data type Mandatory Description

zoomLevel string no The desired zoom level

Response

Name Data type Description

gridIds JSON array The array of gridIds

Format:

{

"gridIds": [

"gridId_1", "gridId_2", ...

]

}

66

8.2.3 GET - Request Site Signals by GridId

GET /grid/{gridId}?signalMode={signalMode}
Return the site signals given the gridId(s) and optionally the signal mode

If signal mode is given, return the site signals in the grid(s) with this mode.

Note: API compression is highly recommended according to the ”Accept-Encoding” in the

HTTP header

Input Parameter

Name Data type Mandatory Description

gridId string yes
The desired gridIds, seperated by commas.

For example, gridId1, gridId2, gridId3

signalMode string no

If this is given, only return the site signals

with this mode. Signal mode tags are:

”WiFiFingerprint”, ”BLEFingerprint”,

”MagFingerprint”, ”BLELocation”

Response

Name Data type Description

grids JSON array The array of grids. Each element consists of gridId, fin-

gerprints, and beaconLocations.

fingerprints JSON array The same format defined in Section 6.1.

beaconLocations JSON object The same format defined in Section 6.1.

Format:

{

"grids": [

{

"gridId": "grid id",

"fingerprints": [

{

"rpId": "RP Id"

"latitude": "latitude",

"longitude": "longitude",

"floorId": "floor Id",

"wifiRssVector": ["mac:rss_value", ...],

"bleRssVector": ["uuid:major:minor:rssi", ...],

67

"magneticSignal": ["magnetic field strength along x-axis", "

along y-axis", "along z-axis"]

}, ...

],

"beaconLocations": [

{

"beaconId": "beacon Id",

"latitude": "latitude",

"longitude": "longitude",

"floorId": "floor Id"

}, ...

]

}, ...

]

}

8.3 Mode 1 – APIs for Computing Locations

Site owner’s servers are required to compute user locations in either asynchronous or syn-

chronous approaches. Both of them has a common API to request the supported signal

modes. In asynchronous approach, there is one API for uploading user signals and one API

for requesting location result. After receiving user signals and an id, the server computes

and stores the location result. Upon users’ request, the server returns the latest location.

In synchronous approach, there is only one API for computing the user location given the

user signal.

The API URL will not be restricted by this standard, and it is up to site owner’s

developers’ design. This section specifies the input and output formats only. The URL

information is uploaded to the lookup server following instructions in Chapter 9.

For the asynchronous approach, site owners should implement the APIs listed in Sec-

tion 8.3.1, Section 8.3.2, and Section 8.3.3. For the synchronous approach, site owners

should implement the APIs listed in Section 8.3.1 and Section 8.3.4.

68

8.3.1 GET - Request Signal Modes

Return the supported signal modes that are available for applications.

Query parameter

No

Response

{

"signalModes": [

"signal mode_1", "signal mode_2", ...

]

}

Note: signal mode tags are:

”WiFiFingerprint”, ”BLEFingerprint”, ”MagFingerprint”, ”BLELocation”

8.3.2 POST - Upload User Signals

Compute a location from the user signals and store it for later request.

Request body

{

"userId": "string"

"wifiRssVector": [

{

"mac": mac address,

"rssi": rssi,

"freq": frequency,

"timestamp": unix timestamp when this AP is scanned

},

...

],

"bleRssVector": [

{

"uuid": uuid,

"major": major,

"minor": minor,

"rssi": rssi,

"txPower": tx power,

69

"timestamp": unix timestamp when this beacon is scanned

},

...

]

}

Response

No

8.3.3 GET - Request Latest User Location

Return the latest location given the user Id. If the location is invalid, return false in the

”inBuilding” attribute, denoting the result is invalid.

Query parameter

Parameter Type Description

userId String The user Id

Response

{

"inBuilding": True/False,

"latitude": "latitude",

"longitude": "longitude",

"floorId": "floor id",

"accuracy": "localization error in meters. Optional"

}

8.3.4 POST - Compute location

Compute and return a location from the user signals. A synchronized version of location

computing API.

Request body

{

"userId": "string"

70

"wifiRssVector": [

{

"mac": mac address,

"rssi": rssi,

"freq": frequency,

"ssid": ssid,

"timestamp": unix timestamp when this AP is scanned

},

...

],

"bleRssVector": [

{

"uuid": uuid,

"major": major,

"minor": minor,

"rssi": rssi,

"txPower": tx power,

"timestamp": unix timestamp when this beacon is scanned

},

...

]

}

Response

{

"inBuilding": True/False,

"latitude": "latitude",

"longitude": "longitude",

"floorId": "floor id" ,

"accuracy": "localization error in meters. Optional"

}

8.4 JWT for Authentication and Authorization

As site owners may want to authenticate users making requests to their server, JWT is

used to provide authentication and authorization in this standard.

71

Figure 8.2: The JWT structure.

In simple words, a JWT consists of 3 parts, namely Header, Payload, and Signature.

Header is the metadata of the token. Payload is the claims, providing the authentication.

Signature is the digital signature of the header and the payload with the private key owned

by the lookup server, providing the authorization. The detailed specifications of JWT can

be found in [5], and this standard only describes the minimal part to make it works.

In our standard, we specify in the token:

1. the issuer who issues the token

2. the subject who is granted the token by the issuer

3. the issued time

4. the expired time

8.4.1 Data Specification of a JWT

Header

Parameter Type Description

tpy
Type of this json object

which is the JWT
“JWT”

alg
Algorithm used in the sig-

nature
“RS256”

72

Payload

Parameter Type Description

iss Issuer of the token ”HKUST Lookup Server”

sub
Subject of the token, iden-

tified by the App Id
App Id

iat Issued time Time in Unix time

exp Expired time Time in Unix time

Signature

Denote the private key held by the lookup server as k. The signature is the ciphertext

from RS256 using “header.payload”(in Base64Url format) as the plaintext and k as the

key. For example, in Fig. 8.2, the signature is the reesult of:

RS256(”eyJ0eXAiOiJKV1QiLCDigIsKImFsZyI6UlMyNTYifQ==.eyJpc3MiOiJIS1VTVC

Is4oCLCiJzdWIiOiJwYXRoYWR2aXNvciIs4oCLCiJleHAiOiIxNjUyNDI0NDg5In3igIs=”

,k).

Public Key of the Lookup Server

The RSA public key of the lookup server (2048 bits) is:

—–BEGIN PUBLIC KEY—–

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAs4xkpwTPqnICaD4+f7W

/Uu7rrkxsZELVR9mxiFcJsgMr37utTl0gNwl4R0tMHmCXNDOTWiQ6fEOr4ssDjpyeq1zl

dbMebR5I1MUQSV+y5IaLJSJFJlxHzp4xgWYauVT5lKUwjf11TJ+pDyOV4femTztHL8

DjgUQXuwld1q9BF4ZqYoZD0k6rTBZT09ev6jC9H0oB7qp1c984HHbaznLzUzKK0b4QC0

+r41Z9alwkA+1vUgwITiIki9LMbiPHBKiaAcWnHLAnjC7rqR+rxyWEpJQ5wr4TAIAG

dEmc27qNOjX0gbet3vR8ZZV26tCxGHpSFiGG5DLgOROizOJ9esIfHQIDAQAB

—–END PUBLIC KEY—–

8.4.2 Validating a JWT

The procedures to validate a JWT:

1. compute the plaintext from the ciphertext using the public key of the lookup server.

That is, RS256(signature, public key)

73

2. do a character-wise comparison between the plaintext and the ”header.payload” ex-

tracted from the token. If they are not the same, this token is invalid

3. check if every attribute is valid according to Section 8.4.1. If any attritube is invalid,

the token is invalid

8.4.3 JWT Location

The JWT should be put in the header in the request, so site owner’s server only need to

validate the token in header if site owners want to authenticate users.

74

9 Site Signal and Map Data Valida-

tion for Site Owners

To enable pervasive positioning, the platform requires site owners to upload a data package

including site information, spatial representation, maps, site signals and metadata for

the grid. Contents in the data package should be arranged according to the standard

specification, including file structure, file naming principle, file contents format and its

values.

This section aims to specify the formats and requirements of the data package for

site owners to prepare the data package of their site. This specification will describe the

requirements of each file in the file system tree, from the utmost file SiteInfo.json to the

WifiFingerprint.txt in the deepest level of the tree.

75

9.1 Data Package Structure – File System Tree

9.1.1 Indoor Site Data Package

Figure 9.1: The file system tree for indoor data validation.

All blocks are named by their filename or folder name. Blocks colored with orange are

folders in data package, they named by categories or tags (FloorNo or RegionNo).

Blocks colored with purple are site signals file of this building, site owner who wants to

share site signal to platform should include this part.

76

9.2 Outdoor Site Data Package

Figure 9.2: The file system tree for outdoor data validation.

Outdoor data package contains less information, as outdoor space is less complex. It

contains SiteInfo.json, OutdoorLocSetting.json and some optional data: map.json, map

file and outdoor site signals.

Optional folder Maps in outdoor data package allow site owner provides customize

outdoor map instead of global map on the internet. The map file should be zipped.

Site owner can provide outdoor site signal to platform in operation mode 2 Platform-

supported Edge Loc.

9.3 Data File Specification – Indoor Site Package

In the top level of the data package, SiteInfo.json, Spatial Representation folder and Site

Signals folder will be located at this level.

77

9.3.1 SiteInfo.json

SiteInfo.json is a JSON file storing site Information, including site address, site owner

information and site owner’s contacts. They should be stored in three fields:

Attribute Data type Description

SiteAddress String Postal address of site

SiteOwner String Site owner description

Contacts String Email address for contact site owner

IndoorSite Boolean

True if this site is an indoor site, false if it is out-

door site.

For site with semi-outdoor area, site owner should

also put it as indoor area.

Example:

{

"SiteAddress": "HKUST, Clear Waterbay",

"SiteOwner": "HKUST"

"Contacts": "itsc@ust.hk",

"IndoorSite": true

}

9.3.2 Spatial Representation Folder

This folder stores all spatial representations and map files. In this level, Building.json,

Floor folders named by their FloorNo are located here.

Building.json

Building.json should contain all building information, including ID, Name, MapDataID,

FloorList and DefaultFloorNo.

Attribute Data type Description

Name String Display name of building

FloorList Array of String
A list of Floor number contained by this building in

ascending order of elevation

DefaultFloorNo String
The default floor number of the building to be dis-

played (e.g., FloorNo hexstring of G/F)

78

Example:

{

"BuildingID": String,

"Name": String,

"FloorList": ["FloorNo"],

"DefaultFloorNo":" FloorNo",

"MapDataID": ["MapID"]

}

Floor Folder

This folder should be named by FloorNo, containing Floor.json, region folders under this

floor.

Floor.json

This JSON file contains floor information, including FloorNo, Name, ParentID, RegionList,

DefaultRegionNo and MapDataID (optional).

Attribute Data type Description

FloorNo String
An 8-bit hex string (2 letters) indicating the floor

number. Refer to Section 6.2.

Name String
The display name of the floor excluding the building

name

RegionList Array of String A list of RegionNo contained by this floor

DefaultRegionNo String Region number of default region

Example:

{

"FloorNo": String,

"Name": String,

"ParentID": ["BuildingID"],

"RegionList": ["RegionNo"],

"DefaultRegionNo": "RegionNo",

"MapDataID": ["MapID"]

}

79

Region Folder

This folder contains Region.json under this region.

Region.json

This file contains region information, including RegionNo, Name, ConnectedList and Map-

DataID (optional).

80

Attribute Data type Description

RegionNo String
An 8-bit hex string (2 letters) indicating the region

number.

Name String
The display name of the region excluding the floor

name.

RegionConnector

Array of JSON ob-

ject {Name, Ge-

ometry}

An array of JSON objects that indicates the possi-

ble region transitions of this region, for example, a

door or an elevator. The name is used as an iden-

tifier when specifying the relation between connec-

tors, and the relations are described in RegionCon-

nection.json. The naming convention is the con-

catenation of the type of connector and a number,

for example, ”Lift 1” or ”Escalator 10”. The tag

is an optional attribute to briefly describe the na-

ture of this connection for potential localization op-

timization. Available tags are ”Elevator”, ”Escala-

tor”, ”Straight stair”, ”Switchback stair”, ”Door”,

”Ramp”, ”Outdoor” (for outdoor connectors), ”Ex-

ternal” (for connecting regions in other building),

and ”Other”. The geometry is the poly-line speci-

fied in array of lon, lat (2D-array) to describe the

locations of this connector. Each JSON should be

described as:

{
”Name”: String,

”Tag”: String,

”Geometry”: Array of [lon, lat]

}

Grid Array of string

The array of 2D grid Ids in zoom level 20 occupied by

this region. The specified area should be supported

with location services.

Constraint

GeoJSON Mul-

tiPolygon co-

ordinate arrays

(optional)

The multi-polygon indicating the walkable

area of this region to improve the localiza-

tion accuracy. The detailed definition can be

found in the official document of GeoJSON

(https://datatracker.ietf.org/doc/html/rfc7946)

81

Example:

{

"RegionNo": String,

"Name": String,

"ParentID": String,

"MapDataID": ["MapID"],

"ConnectedRegions": [

{

"TransitionArea": [

[lon,lat], [lon,lat], [lon,lat], [lon,lat]

],

"ArrivalArea": [

{

"RegionID": String,

"Area": [

[lon,lat], [lon,lat], [lon,lat], [lon,lat]

]

}

]

}

]

}

RegionConnection.json

This JSON file contains the topological information between regions.

82

Attribute Data type Description

TwoConnector

Array of JSON ob-

ject {From, To,

Bidirectional}

The connection between two connectors, for exam-

ple, an escalator. ”From” and ”To” describe the

RegionID and the name of the connector. For

connections to outdoor, ”Name” should be ”Out-

door”, and ”FloorNo” and ”RegionNo” should be

null. ”Bidirectional” is a Boolean indicator to de-

note whether the connection is unidirectional or bidi-

rectional. Each JSON object is described as:

{
”From”: {

”FloorNo”: Sting,

”RegionNo”: Sting,

”Name”: String

}
”To”: {

”FloorNo”: Sting,

”RegionNo”: Sting,

”Name”: String

}
”Bidirectional”: Boolean

}

SeveralConnector
Array of JSON ob-

ject {Connector}

The strongly connected connectors, for example, an

elevator. Expected to have number of connectors

>=3. ”Connectors” describes the RegionID and the

name of each connector. Each JSON object is de-

scribed as:

{
”Connector”: [{

”FloorNo”: Sting,

”RegionNo”: Sting,

”Name”: String

}]

}

83

9.3.3 Maps folder

This folder is the entry point of all maps and their metadata.

Map.json

This JSON file (in array form) is the metadata for each map file, including MapID, Map-

Format, GeodeticPoints, Boundary, AttachedPrimalSpaceID and Filename. It starts with

”[”. Each object inside the array is described as:

84

Attribute Data type Description

Filename String Filename of map file. Should be unique.

MapFormat String
The format of the map, e.g., JPG, PNG, In-

doorGML, IMDF, GeoJSON, etc.

GeodeticPoint

Array of JSON ob-

ject {X, Y, Lon,

Lat}

Used in image formats (png, jpg, etc.). The array

of geodetic points. Each geodetic point contains a

coordinate in the map and a [lon,lat] pair. It is used

in image format, and the geodetic points should be

the 4 corners sorted in clockwise direction. JSON

object of each geodetic point is described as:

{
”X”: Double

”Y”: Double

”Lon”: Double

”Lat”: Double

}

ImdfFloor

Array of JSON ob-

ject FloorId, Imdf-

FloorUuid

Used for IMDF if the IMDF is in the building layer

(includes multiple floors). It is the array of each floor

association between this standard and the IMDF.

Each element is a JSON object with attributes

”FloorId” and ”ImdfFloorUuid”. The ”FloorID” is

the floodId in this standard while the ”ImdfFloorU-

uid” is the uuid of the floor in IMDF. Each JSON

object is described as:

{
”FloorID”: String

”ImdfFloorUuid”: String

}

Grid Array of string

The occupied grid Ids of this map in zoom level 20.

They should be outdoor grids and the superset of

the union of the grid list in the attached spaces of

this map.

AttachedPrimalSpaceID Array of string
ID of Spatial Object (BuildingID/ FloorID/ Region-

ID/ SiteID) that this map links to.

Validation Boolean
Declaimer of map format is valid to the file standard

(e.g. IMDF, IndoorGML)
85

Example:

{

"MapID":String,

"MapFormat":String,

"AttachedPrimalSpaceID ":String,

"Filename":String,

"GeodeticPoints": [

{X, Y, Lon, Lat}, {X, Y, Lon, Lat}, ...

],

"Boundary": [

[lon,lat], [lon,lat], [lon,lat],[lon,lat], ...

],

"Validation": true

}

Mapfile.zip

This is the zipped package of map files. It should contain all map files referring to each

object in Map.json.

9.3.4 Site Signals Folder

This folder is the entry point of all site signals and their metadata, site signals are arranged

according to the floor ID in this folder.

LocSetting.json

This JSON file stores properties related to localization, including BuildingID, boolean to

indicate sharing site signal with platform, SignalMode , CloudLocSignaMode and URLs

for distributed server approach.

If site owner wants to share site signal with platform, you should put ”True” in Share-

SiteSingal and include site signals in the data package. Otherwise, you should put ”false”

and provide URLs.

86

Attribute Data type Description

BuildingID String ID of Building, CSUID

SupportedFloor Array of String
An array of floor numbers that defines the floors

supported with localization services.

OutdoorBaseMap String

The outdoor base map that is used when design-

ing the maps or localization algorithm. It can be

”OSM”, ”Google Maps”, or ”Apple Maps”.

ShareSiteSignal Boolean
True if site owner shared their site signal with plat-

form. Otherwise, set as false.

SiteSignalMode

Array of String

(only for Share-

SiteSignal ==

true)

Array of site signal tags to describe available signal

for localization.

Signal tags: ”WifiFingerprint”, ”BLELocation”,

”MagFingerprint”

For site owners not sharing their site signals, please

follow Chapter 8 to provide their SiteSignalMode for

applications.

RemoteSignalDow

nloadURL

String (only for

Mode 0)

URL for downloading site signal package from site

server.

RemoteCloudLoc

UploadURL

String (only for

Mode 1)

URL for uploading user’s signal to site server for

cloud localization.

RemoteCloudLoc

DownloadURL

String (only for

Mode 1)

URL for downloading user localization results from

the site server.

RemoteCloudSyn

cLocURL

String (only for

Mode 1)
URL for computing the location synchronously.

RemoteCloudSign

alModeURL

String (only for

Mode 1)

URL for the signal mode supported from the site

server.

Example (Mode 1 site owner):

{

"BuildingID": "CSUID",

"SupportedFloors": ["00","01","02","03"],

"Grids": ["2007125470451263","2007125470451263"] ,

"ShareSiteSignal": false,

"RemoteCloudLocUploadURL": "https://cloudLocUploadURL:port",

"RemoteCloudLocDownloadURL": "https://cloudLocDownloadURL:port",

"RemoteCloudSignalModeURL": "https://cloudSiteSignalModeURL:port"

87

}

Site Signal of Each Floor

Site signals should be arranged according to floor structure, each floor folder is named by

FloorNo.

WifiFingerprint.txt

This file stores all Wifi fingerprints collected on the floor with FloorNo specified in the

upper level. Each row in WifiFingerprint.txt stores one WifiFingerprint on a reference

point, it contains Latitude, Longitude, FloorNo and an array of string that stores key-pair

of Mac Address and RSSI. The format is:

latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

Notice that separator ”|” is used to separate location information and signal informa-

tion. Spacebar should not appear in the file.

File name WifiFingerprint.txt

Content latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

latitude,longitude,FloorNo|[”mac:rssi”,”mac:rssi”,......,”mac:rssi”]

BLELocation.txt

This file stores all beacon identity and its location on the floor with FloorNo specified in

the upper level. Each row in file stores one beacon identity, the format is:

latitude,longitude,FloorNo|UUID,major,minor

Notice that separator ”|” is used to separate location information and beacon identity.

Spacebar should not appear in the file.

File name BLELocation.txt

Content latitude,longitude,FloorNo|UUID,major,minor

latitude,longitude,FloorNo|UUID,major,minor

latitude,longitude,FloorNo|UUID,major,minor

latitude,longitude,FloorNo|UUID,major,minor

88

MagFingerprint.txt

This file stores all magnetic field signal and its location on the floor with FloorNo specified

in the upper level. Each row in file stores an array of magnetic field signal on the location,

the format is:

latitude,longitude,FloorNo|[”mag x,mag y,mag z”,......,”mag x,mag y,mag z”]

Notice that separator ”|” is used to separate location information and beacon identity.

Spacebar should not appear in the file.

File name MagFingerprint.txt

Content latitude,longitude,FloorNo|[”mag x,mag y,mag z”,......,”mag x,mag y,mag z”]

latitude,longitude,FloorNo|[”mag x,mag y,mag z”,......,”mag x,mag y,mag z”]

latitude,longitude,FloorNo|[”mag x,mag y,mag z”,......,”mag x,mag y,mag z”]

9.4 Data File Specification – Outdoor Site Package

9.4.1 SiteInfo.json

siteInfo.json is a JSON file storing site Information, including site address, site owner

information and site owner’s contacts. They should be stored in three fields:

Attribute Data type Description

SiteAddress String Postal address of site

SiteOwner String Site owner description

Contacts String Email address for contact site owner

IndoorSite Boolean

True if this site is an indoor site,

false if it is outdoor site.

For site with semi-outdoor area, site owner should

also put it as indoor area.

Example:

{

"SiteAddress": "HKUST, Clear Waterbay",

"SiteOwner": "HKUST"

"Contacts": "itsc@ust.hk",

89

"IndoorSite": true

}

9.4.2 Maps folder

Please refer to Section 9.3.3.

9.4.3 Site Signals Folder

This folder is the entry point of all site signals and their metadata, site signals are arranged

in this folder.

LocSetting.json

This JSON file stores properties related to localization, including OutdoorSiteID, boolean

indicate sharing site signal with platform, SignalMode and URLs for distributed server

approach.

If site owner wants to share site signal with platform, you should put ”True” in Share-

SiteSingal and include site signals in the data package. Otherwise, you should provide

download site signal URL.

90

Attribute Data type Description

OutdoorSiteID String

Outdoor CSUID, it consists of geo-reference number,

polygon type and creation date.

Geo-reference number: a 10-digit identifier formed

by combining the Easting and Northing of the label

point within the outdoor site boundary. (Easting

and Northing are from HK 1980 Grid Coordinates,

decimal is truncated and the first digit is removed

from the coordinates.)

Polygon type: ‘O’ for Outdoor.

Creation Date: YYYYMMDD

e.g. OutdoorSiteID: ”4520522021O20220412”

Grid Array of string The grid Ids of the supported area of this site.

OutdoorBaseMap String

The outdoor base map that is used when design-

ing the maps or localization algorithm. It can be

”OSM”, ”Google Maps”, or ”Apple Maps”.

ShareSiteSignal Boolean
True if site owner shared their site signal with plat-

form. Otherwise, set as false.

SiteSignalMode

Array of String

(only for Share-

SiteSignal ==

true)

Array of site signal tags to describe available signal

for localization.

Signal tags: ”BLELocation”.

RemoteSignalDow

nloadURL

String (only for

Mode 0)

URL for downloading site signal package from site

server.

Example (Mode 0 site owner):

{

"OutdoorSiteID": String,

"Boundary": [

[lon,lat], [lon,lat], [lon,lat], [lon,lat]

],

"ShareSiteSignal": false,

"RemoteSignalDownloadURL": "https://RemoteSignalDownloadURL:port"

}

91

<OutdoorSiteID> Folder

A folder named by the OurdoorSiteID.

BLELocation.txt

This file stores all beacon identity and its location on the outdoor site. Each row in file

stores one beacon identity, the format is:

latitude,longitude,OutdoorSiteID|UUID,major,minor

Notice that separator ”|” is used to separate location information and beacon identity.

Spacebar should not appear in the file.

File name BLELocation.txt

Content latitude,longitude,OutdoorSiteID|UUID,major,minor

latitude,longitude,OutdoorSiteID|UUID,major,minor

latitude,longitude,OutdoorSiteID|UUID,major,minor

latitude,longitude,OutdoorSiteID|UUID,major,minor

9.5 Data Validation on the Platform

When the data package is uploaded by the site owner, it will pass through a validation

process by the platform operator to check if it conforms to the standard. If it passes

the validation, it will be managed and recorded into the database for web API requests.

Otherwise, the platform operator will contact the site owner through email to revise their

data package.

The data validation tool operates on the platform only checks the file structure, data

format and necessary information for communication, data accuracy inside the data file

will not be checked. For example, the existence of field name ”BuildingName” will be

checked in file Building.json, but the value of ”BuildingName” : ”dummy building” will

not be checked. Site owners and developers should be aware of the data accuracy.

92

10 User Journey Examples

10.1 Setting

This setting is used throughout this section:

There are two buildings, namely building A and building B, and the first floor of

building A and B are connected by a skyway.

Building A’s site owner is not willing to share his site signals with the lookup server

while building B’s site owner is. Building A’s site owner hosts a server for computing

location and a server for downloading site signals, he sends his server addresses and maps

to the lookup server. Buidling B’s site owner sends his site signals and maps to the lookup

server.

Building A’s site signals are iBeacon locations while building B’s site signals are WiFi

fingerprints.

Application uses reference designs in SDK by default.

10.2 For Each Operation Mode

10.2.1 Operation Mode 0

Say the user is in building A, and the application is initializing a location.

93

Figure 10.1: Detecting indoor environment and handshaking for operation mode of building
A

First, the application initiates a Localization Assistant and an API Manager using the

SDK, and call the detectIndoorEnvironment() in Localization Assistant by inputting the

location result from GPS. It should return true since the user is inside the building.

Then call the discoverBuilding() in API Manager by inputting the location result from

GPS. The API Manager then contacts the lookup server to find the nearest building of

the given location which is building A in this case, and returns the supported modes of

building A. The result should be “0, 1” since building A supports both operation mode 0

and 1.

94

Figure 10.2: Requesting grid Ids from the site owner’s server

Then the application calls the getGridIdListForEdgeLoc() in the API Manager to get

the grid Ids of grids that are close to the GPS location from the site owner’s server.

Figure 10.3: Requesting grids from the site owner’s server and computing location locally

Since the application chooses mode 0 which is an edge approach, the application calls

the downloadSiteSignals() in the API Manager to download the site signals that are the

beacon locations in this case from the site owner’s server. The location is then computed

locally using those downloaded beacon locations.

95

In every location computation, the application first checks if the downloaded beacon

locations can be used to provide a valid location. If not, meaning that the user moves away

from the region covered by the downloaded beacon locations, then new beacon locations

need to be downloaded by handshaking again or manipulating the grid Id list and requesting

again for advanced developers.

Figure 10.4: Requesting maps from the lookup server

With the location, the application calls the getMapData() in the API Manager to obtain

the map in its preferred format, .jpg in this case, from the lookup server.

10.2.2 Operation Mode 1

Say the user is in building A, and the application is initializing a location.

Steps 1 – 6 are the same as operation mode 0 to confirm the building and the operation

mode.

96

Figure 10.5: Confirming required signal types from and uploading user signals to the site
owner’s server

Since the application chooses mode 1 which is a cloud approach, it needs to know

what signals are supposed to be uploaded by calling the getSignalTypeForCloudLoc() in

API Manager. The result should be [“beacon locations”]. Next is to periodically, say 10s,

collect the beacon signals and call the uploadSignalToCloud() in the API Manager. After

receiving the user signals, building A’s server needs to compute and store the result for

future location requests.

97

Figure 10.6: Requesting latest location from the site owner’s server

The application then calls the getCloudLocResult() in the API Manager to retrieve the

location from the site owner’s server, and the server returns the latest location of this user.

With the location, the application calls the getMapData() in the API Manager to obtain

the map from the lookup server, similar to operation mode 0.

10.2.3 Operation Mode 2

Say the user is in building B, and the application is initializing a location.

98

Figure 10.7: Detecting indoor environment and handshaking for operation mode of building
B

First, the application initiates a Localization Asistant and an API Manager using the

SDK, and call the detectIndoorEnvironment() in Localization Asistant by inputting the

location result from GPS. It should return true since the user is inside the building.

Then call the discoverBuilding() in API Manager by inputting the location result from

GPS. The API Manager then contacts the lookup server to find the nearest building of

the given location which is building B in this case, and returns the supported modes of

building B. The result should be “2, 3” since building B supports both operation mode 2

and 3.

99

Figure 10.8: Requesting grid Ids from the lookup server

Then the application calls the getGridIdListForEdgeLoc() in the API Manager to get

the grid Ids of grids that are close to the GPS location from the lookup server.

Figure 10.9: Requesting grids from the lookup server and computing location locally

Since the application chooses mode 2 which is an edge approach, the application calls

the downloadSiteSignals() in the API Manager to download the site signals that are the

WIFI fingerprints in this case from the lookup server. The location is then computed

locally using those downloaded fingerprints.

100

In every location computation, the application first checks if the downloaded finger-

prints can be used to provide a valid location. If not, meaning that the user moves away

from the region covered by the downloaded fingerprints, then new fingerprints need to be

downloaded by handshaking again or manipulating the grid Id list and requesting again

for advanced developers.

With the location, the application calls the getMapData() in the API Manager to obtain

the map from the lookup server, similar to other operation modes.

10.2.4 Operation Mode 3

Say the user is in building B, and the application is initializing a location.

Step 1 – 6 are the same as operation mode 2 to confirm the building and the operation

mode.

Figure 10.10: Confirming required signal types from and uploading user signals to the
lookup server

Since the application chooses mode 3 which is a cloud approach, it needs to know

what signals are supposed to be uploaded by calling the getSignalTypeForCloudLoc() in

API Manager. The result should be [“wifi fingerprints”]. Next is to periodically, say 10s,

collect the WIFI user signals and call the uploadSignalToCloud() in the API Manager.

After receiving the user signals, the lookup server needs to compute and store the result

for future location requests.

101

Figure 10.11: Requesting latest location from the lookup server

The application then calls the getCloudLocResult() in the API Manager to retrieve the

location from the lookup server, and the server returns the latest location of this user.

10.3 Switching Floor and Mode

10.3.1 Switching Floor

In cloud approaches, switching floor does not require application developers to initiate.

Since the location computations are in the site owner’s server (mode 1 in building A) or

the lookup server (mode 3 in building B), they are responsible for detecting if the user

enters a new floor and returning the correct location result. Application developers only

need to check if the floorId is different from the previous one, indicating new map needs

to be downloaded.

In edge approaches, application developers are responsible for detecting if the user enters

a new floor. With the downloaded beacon locations (building A) or fingerprints (building

B), the application can detect if the user is in the supported region of the downloaded

signals, using the location result and the grid information of the downloaded grids. If the

user is in the boundary grids or outside the grids, the application should load new site

signals, and the simplest way is to handshake again. More advanced developers may want

to manipulate with the grid Ids by their understanding of the data format designs, e.g.,

102

BuildingObj, FloorObj, GridObj, etc. and retrieve the suitable grids from the site owner’s

server (mode 0 in building A) and the lookup server (mode 2 in building B).

10.3.2 Switching Mode

Switching mode is rather straightforward. The application should periodically call the

detectSwitchCondition() in the Localization Asistant. Say the user is moving from building

A to building B. The detectSwitchCondition() should return building B’s Id at some point.

When this happens, the application can handshake again with the lookup server, and steps

1-6 in operation mode 2/3 in the previous section should be processed to locate the user in

building B with a minor difference that the application calls the discoverBuilding() with

the building B’s Id instead of the GPS location.

10.4 Outdoor Localization

Say the application is initializing a location outside building A and B. The application first

calls the detectIndoorEnvironment() in the Localization Asistant, and the result should be

false. The application can then use GPS result directly or call its outdoor localization

algorithm with the outdoor signals, for example, the smart lampposts. The application

calls the getOutdoorSignal() in the API Manager, and, in this case, it returns an empty

array since no outdoor signals are available. Therefore, the application uses the GPS result

directly.

10.5 In-Outdoor Transition

10.5.1 Indoor to Outdoor

This is similar to switching mode. Say the user is moving from building B to outdoors.

The detectSwitchCondition() should return “outdoor” at some point. When this happens,

the application switches to outdoor localization like in Section 10.4

10.5.2 Outdoor to Indoor

When the application is in outdoor environments, it should call detectIndoorEnvironment()

periodically. Say the user enters building B. The detectIndoorEnvironment() should return

103

true at some point. When this happens, steps 1-6 in operation mode 2/3 in the previous

section are processed to locate the user in building B.

104

Bibliography

[1] Rubén Cantarero Navarro et al. “A Proposal for Modeling Indoor–Outdoor Spaces

through IndoorGML, Open Location Code and OpenStreetMap”. In: ISPRS In-

ternational Journal of Geo-Information 9.3 (2020). issn: 2220-9964. url: https:

//www.mdpi.com/2220-9964/9/3/169.

[2] Geographic information — Positioning services (ISO 19116:2019). International Or-

ganization for Standardization. 2019.

[3] Thomas Gilbert et al. “Built environment data standards and their integration: an

analysis of IFC, CityGML and LandInfra”. In: 2020.

[4] Information technology — Real time locating systems — Test and evaluation of lo-

calization and tracking systems (ISO/IEC 18305:2016). International Organization

for Standardization. 2016.

[5] J. Jones M. amd Bradley and N. Sakimura. JSON Web Token (JWT). May 2015.

[6] Tatjana Kutzner, Kanishk Chaturvedi, and Thomas Kolbe. “CityGML 3.0: New

Functions Open Up New Applications”. In: PFG – Journal of Photogrammetry Re-

mote Sensing and Geoinformation Science 88 (Feb. 2020). doi: 10.1007/s41064-

020-00095-z.

[7] Ki-Joune Li et al. “Survey on Indoor Map Standards and Formats”. In: 2019 In-

ternational Conference on Indoor Positioning and Indoor Navigation (IPIN). 2019,

pp. 1–8. doi: 10.1109/IPIN.2019.8911796.

[8] Liu Liu et al. “Indoor navigation supported by the Industry Foundation Classes

(IFC): A survey”. In: Automation in Construction 121 (2021), p. 103436. issn: 0926-

5805. doi: https://doi.org/10.1016/j.autcon.2020.103436. url: https:

//www.sciencedirect.com/science/article/pii/S0926580520310165.

105

[9] Marc-O. Löwner et al. “Proposal for a new LOD and multi-representation concept for

CityGML”. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences (2016), pp. 3–12.

[10] OGC City Geography Markup Language (CityGML) Encoding Standard version 2.0,

OGC 12-019. OGC. 2012.

[11] OGC IMDF version 1.0.0, OGC 20-094. OGC. 2021.

[12] OGC IndoorGML version 1.0.3, OGC 14-005r5. OGC. 2018.

[13] OGC KML version 2.3, OGC 12-007r2. OGC. 2015.

[14] Tilesets: Google maps structure. https://www.microimages.com/documentation/

TechGuides/78googleMapsStruc.pdf. MicroImages, Inc.

[15] Jinjin Yan. “Seamless Navigation in Indoor and Outdoor based on 3D Spaces”. PhD

thesis. Nov. 2020.

106

Revision History

Revision Date Author(s) Description

0.1 22.04.06 Gary W.-H.

Cheung, Peter

Tsui, Mengyun

Liu, S.-H. Gary

Chan

First draft

107

