Airborne LiDAR Survey with SatRef Data Services

Survey Division, Ben CHOI (LS/PS)

20 February 2013

- 1. Basic Concept of Airborne LiDAR
- 2. CEDD 2010 LiDAR Survey
- 3. Contribution of SatRef in 2010 LiDAR Survey

3

1. Basic Concept of Airborne LiDAR

Survey Division, CEDD

Airborne LiDAR - Light Detection and Ranging -- Mobile Mapping System (MMS) in the air

Survey Division, CEDD

Airborne LiDAR Working Principle

5

□ An integrated system composed of:

Laser Scanner

Inertial Measuring Unit (IMU) Survey Division, CEDD

May be integrated with Digital Aerial Camera to produce orthophoto and for data editing

GNSS Satellites

Reference Ground Station

Characteristics of Airborne LiDAR ----1) High sampling density

- □ Adjustable sampling resolution
 - → upto Sub-meter resolution
 - \rightarrow your every outdoor steps have a single LiDAR pt.

Survey Division, CEDD

Airborne LiDAR Survey using SatRef Service

Characteristics of Airborne LiDAR ----2) Penetration into Vegetation

Survey Division, CEDD

Characteristics of Airborne LiDAR ---3) Detection of Multiple Return Signals

Characteristics of Airborne LiDAR ---4) Intensity Range of Returned Signal

19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	Mate	rials Reflectivity(%
	Mate)
	White paper	Up to 100
	Dimension lui	nber 94
	Snow	80~90
	Beer foam	88
	Limestone of	y 85 W Up to 75
	Newspaper w	ty Op to 75
	Tissue paper.	with ply 60
	Deciduous tre	es Typ. 60
	Carbonate san	d(dry) 57
	Beach sands	Тур. 50
	Carbonate san	d(wet) 41
	Coniferous tre	es Typ. 30
	Rough wood j	pallet (clean) 25
	Concrete, smo	oth 24
BUT	Summary of Intencity J	Value of Lidar Data
	120 Summary of Intensity V	AIUC OF LIGHT Data MaxIntensiv Min Intensity
CARLES Y / SLEAKED Y		• Mean
	94	91
		73
Courtesy: Tukai Manning		44 146 W
		25
Central Europe		12 3
		Roof Rock Sand Grass
	Catalogu	ie
	- FIG	

Survey Division, CEDD

10

Characteristics of Airborne LiDAR ----5) Rich information in LiDAR data

11

Rich information stored in the LiDAR data

Class Name, Date & Time, Echo number, RGB Color, X, Y, Z, Intensity Value

Points 2m above ground (Purple	303	Only	View fields				
Points 2m above ground (Purple Extra ground (Grey) Points 2m above ground (Purple Extra ground (Grey) Extra ground (Grey) Extra ground (Grey) Points 2m above ground (Purple Extra ground (Grey)	303 303 303 303 303 303 303 303 303 303	Only Only Only Only Only Only Only Only	☐ <u>C</u> lass ☐ <u>D</u> escription ☐ <u>L</u> ine ☐ <u>T</u> ime stamp ☐ Date	☐ Ec <u>h</u> o ☐ <u>E</u> asting ☐ <u>N</u> orthing ☐ Ele <u>v</u> ation		Intensity <u>P</u> oint color RGB P <u>o</u> int color HSV <u>S</u> can angle	Echo number Scanner Echo length Group
xtra ground (Grey) Points 2m above ground (Purple	303 303	Only Last					
Extra ground (Grey) Extra ground (Grey) Ground points (Black) Points 2m above ground (Purple	303 303 303 303 303	Only Only Only Only	841000.14 841000.19 841000.22 841000.24	816217.59 816216.95 816216.30 816215.65	+4.21 +4.15 +4.16 +4.36	22 1/1 20 1/1 17 1/1 23 1/1	
extra ground (Grey) Extra ground (Grey)	303 303	Uniy Only	841000.31 841000.35	816215.02 816214.38	+4.11 +4.05	31 1/1 40 1/1	

Survey Division, CEDD

Characteristics of Airborne LiDAR ----6) Production of DTM and DSMetc.

Survey Division, CEDD

13

2. CEDD 2010 LiDAR Survey

Survey Division, CEDD

CEDD 2006 and 2010 LiDAR Survey

Optech Gemini ALTM (Airborne Laser Terrain Mapper)

Laser Scanner

N22C Nomad

LiDAR Sensor - Optech 3100

Survey Division, CEDD

IMU

Flight Plan 2010 and Restults

Survey Division, CEDD

Horizontal Accuracy Assessment of 2010 LiDAR Data

Ground truth survey: By Survey Division, CEDD

Item	Value (m)
Number of Points	5575
Average offset	-0.002
Minimum offset	-0.537
Maximum offset	0.986
Average magnitude	0.113
Root mean square	0.147
Accuracy at 95% CI	0.294
(Confidence Interval)	(meet 0.3m requirement)
Std deviation	0.094

Vertical Accuracy Assessment of 2010 LiDAR Data

LiDAR against test point in orthometric heights (HKPD) --- By CEDD

Item		Flat Clear Ground (m)	Low Veg (m)	Med Veg (m)	High Veg (m)
Number of Points		1566	339	148	109
Average dz		T		The second	
Minimum dz					
Maximum dz		RMS=0.0924m	0.794	1.221	0.388
Average magnitude		0.030	0.263	0.150	0.113
Root mean square	1 Sigma	0.046	0.334	0.244	0.151
Accuracy at 95% CI	2 Sigma	0.092 (meet 0.1m requirement)	0.668	0.488	0.302
Std deviation		0.046	0.245	0.244	0.146

19

3. Contribution of SatRef. in 2010 LiDAR Survey

Survey Division, CEDD

Aircraft's Position and Orientation

Aircraft Position (via POS + DGPS)

20

□ LiDAR unit's POS system records GPS signals at 1Hz, so as to postprocess the position of the aircraft's trajectory.

2s

- □ DGPS processing requires having the base station observations recorded at the same frequency. (i.e. 1Hz) $z = \frac{z}{1} z^{Y}$
- SMO temporarily increased the recording rate of the SatRef base stations from 5s to 1s and provided a download link for CEDD to obtain the required data.
- □ Aircraft GPS + SatRef GPS observations
 - \rightarrow precise position of the aircraft in every second.

1s

6s

5s

aser

Scanner

4s

Aircraft's Position and Orientation

Aircraft Orientation (via IMU)

□ LiDAR unit measures the orientation of the aircraft at 200Hz using an Inertial Measuring Unit (IMU).

•.1s

IMU measurements are introduced to refine the 1Hz GPS position of the aircraft.

3s

 □ GPS measurements + IMU measurements → smoothed aircraft trajectory (precise position, roll, pitch, and heading at the frequency of 200Hz) **5**s

Laser Scanner

IMU

Alternative solution if NO SatRef

If without SatRef Data Service:

- □ Possible to interpolate 1 Hz measurements from less frequent GPS observations onbroad, but will introduce another source error → may not meet project requirements.
- □ Need to setup "x" GPS units across HKSAR, each < 30km from the aircraft. For redundancy → "2x" GPS units are required.</p>
- □ All "2x" GPS units need to be running and coordinated → depend on the weather and ATC instructions.

Airborne LiDAR Survey using SatRef Service

Alternative solution if NO SatRef

If without SatRef Data Service:

Will substantially increase project costs (logistic, coordination, computation, time ...)

e.g (3 person/site x 12 sites x 20 days) = 720 man days

□ Will introduce **extra project risks, errors** and **uncertainty**.

Airborne LiDAR Survey using SatRef Service

Merits of Using SatRef Data Service in 2010 LiDAR Survey

With SatRef Data Service:
Reduced project cost
Reduced project complexity and risk

□ Efficiency and Quality Guaranteed

Thank You SatRef !

Survey Division, CEDD

24

25

Thank You

Survey Division, CEDD